
DIGITAL

ELECTRONICS

&

MICROPROCESSOR

(TH-3)

(As per the latest syllabus prepared by the SCTE&VT,

Bhubaneswar, Odisha)

Fifth Semester

Electrical Engg.

 Er. B.R. NAYAK

DIGITALELECTRONICS &

MICROPROCESSOR

CHAPTER-WISE DISTRIBUTION OF PERIODS & MARKS

Sl.
No.

Chapter

No.
Topics

Periods
as per

syllabus

Periods
actually
needed

Expected
marks

1 1
BASICS OF DIGITAL

ELECTRONICS
12 12 25

2 2
COMBINATIONAL

LOGIC CIRCUITS
10 10 20

3 3
SEQUENTIAL LOGIC

CIRCUITS
09 09 15

4 4
8085

MICROPROCESSORS
15 15 25

5 5
INTERFACING AND

SUPPORT CHIPS
04 04 05

Total 60 60 110

Chapter-01

INTRODUCTION
LEARING OBJECTIVES:

1.1-Binary, Octal, Hexadecimal number systems and compare with Decimal

system.

1.2-Binary addition, subtraction, multiplication and division.

1.3-1’s compliment and 2’s complement numbers for a binary number.

1.4-Subtraction of binary numbers in 2’s complement method.

1.5-Use of weighted and Un-weighted codes & binary equivalent number for a

number in 8421, Excess-3 code and gray code and vice-versa.

1.6-Importance of parity bit.

1.7-Logic gates: AND, OR, NOT, NOR, NAND, EX-OR Gate with truth table.

1.8-Realize AND, OR, NOT OPERATION using NAND, NOR gates.

1.9-Different postulates and De-Morgan’s theorems in Boolean algebra.

1.10-Use of Boolean Algebra for simplification of logic expression.

1.11-Karnaugh map for 2,3,4 variable, Simplification of SOP and POS logic

expression.

INTRODUCTION: -
✓ The term digital refers to a process that is achieved by using discrete unit.

✓ In number system there are different symbols and each symbol has an absolute

value and also has place value.

RADIX OR BASE: -

✓ The radix or base of a number system is defined as the number of different digits

which can occur in each position in the number system.

1.1-Binary, Octal, Hexadecimal number system and compare with

decimal system

NUMBER SYSTEM: -

TYPES OF NUMBER SYSTEM: -

There are four types of number systems. They are

1. Decimal number system

2. Binary number system

3. Octal number system

4. Hexadecimal number system

DECIMAL NUMBER SYSTEM: -
✓ The decimal number system contains ten unique symbols 0,1,2,3,4,5,6,7,8 and 9. In decimal

system 10 symbols are involved, so the base or radix is 10.

✓ It is a positional weighted system.

✓ The value attached to the symbol depends on its location with

respect to the decimal point. In general,

dn dn-1 dn-2 … ………… d0 . d -1 d -2 d - m

is given by

(dn x 10n) + (dn-1 x 10n-1) + (dn-2 x 10n-2) + … + (d0 x 100) + (d-1 x 10 -1) + (d-2 x 10 -2)

+…+(d m x 10 –m)

For example: 9256.26 = 9 x 1000 + 2 x 100 + 5 x 10 + 6 x 1 + 2 x (1/10) + 6 x (1/100)

 = 9 x 103 + 2 x 102 + 5 x 101 + 6 x 100 + 2 x 10-1 + 6 x 10-2

BINARYNUMBER SYSTEM: -

✓ The binary number system is a positional weighted system. The base or radix of this

number system is 2.

✓ It has two independent symbols. The symbols used are 0 and 1.

✓ A binary digit is called as bit.

OCTAL NUMBER SYSTEM: -

✓ It is also a positional weighted system. Its base or radix is 8.

✓ It has 8 independent symbols 0,1,2,3,4,5,6 and 7.

✓ Its base 8 = 23 , every 3- bit group of binary can be represented by an octal digit.

HEXADECIMALNUMBER SYSTEM: -

✓ The hexadecimal number system is a positional weighted system. The base or radix of

this number system is 16.

✓ The symbols used are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F

✓ The base 16 = 24 , every 4 – bit group of binary can be represented by an hexadecimal

digit.

CONVERSION FROM ONE NUMBER SYSTEM TO ANOTHER

1-BINARY NUMBER SYSTEM: -
Binary to decimal conversion: -

✓ In this method, each binary digit of the number is multiplied by its positional weight

and the product terms are added to obtain decimal number.

For example:

• Convert (10101)2 to decimal.

Solution:

(Positional weight) 24 23 22 21 20 Binary number 10101

= (1 x 24) + (0 x 23) + (1x 22) + (0 x 21) + (1 x 20)

= 16 + 0+ 4+ 0+ 1

= (21)10

• Convert (111.101)2 to decimal. Solution:

(111.101)2 = (1 x 22) + (1 x 21) + (1x 20) + (1 x 2 -1) + (0 x 2 -2) + (1 x 2 -3)

= 4+ 2+ 1 + 0.5 + 0 + 0.125

= (7.625)10

Binary to Octal conversion: -

• For conversion binary to octal the binary numbers are divided into groups of 3 bits

each, starting at the binary point and proceeding towards left and right.

Octal Binary Octal Binary

0 000 4 100

1 001 5 101

2 010 6 110

3 011 7 111

For example:

(i) Convert (101111010110.110110011)2 into octal. Solution---

Group of 3 bits are 101 111 010 110 . 110 110 011

Convert each group into octal = 5 7 2 6 . 6 6 3

The result is (5726.663)8

(i) Convert (101111010110.110110011)2 into octal. Solution---

Group of 3 bits are 101 111 010 110 . 110 110 011

Convert each group into octal = 5 7 2 6 . 6 6 3

The result is (5726.663)8

Binary to Hexadecimal conversion: -

For conversion binary to hexadecimal number the binary numbers starting from the binary

point, groups are made of 4 bits each, on either side of the binary point.

Hexadecimal

0

Binary

0000

Hexadecimal

8

Binary

1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

For example--

Convert (1011011011)2 into hexadecimal.

 Solution

Given Binary number 10 1101 1011

Group of 4 bits are 0010 1101 1011

Convert each group into hex

The result is (2DB)16

= 2 D B

Convert (01011111011.011111)2 into hexadecimal.

Solution:

2-DECIMAL NUMBER SYSTEM: -
Decimal to binary conversion: -

In the conversion the integer number are converted to the desired base using successive

division by the base or radix.

For example:

Convert (52)10 into binary

Solution-

Divide the given decimal number successively by 2 read the integer part remainder upwards

to get equivalent binary number. Multiply the fraction part by 2. Keep the integer in the

product as it is and multiply the new fraction in the product by 2. The process is continued

and the integer are read in the products from top to bottom.

2 I52

2 l26 — 0

2 l13 — 0

2 l6 — 1

2 l3 — 0

2 l1 — 1

0 — 1

Result of (52)10 is (110100)2

Convert (105.15)10 into binary.

Integer part Fraction part

2 I105 0.15 x 2 = 0.30

2 l 52 ― 1 0.30 x 2 = 0.60

2 l 26 ― 0 0.60 x 2 = 1.20

2 l13 ― 0 0.20 x 2 = 0.40

2 l6 ― 1 0.40 x 2 = 0.80

2 l3 ― 0 0.80 x 2 = 1.60

2 l1 ― 1

0 ― 1

Result of (105.15)10 is (1101001.001001)2

Decimal to octal conversion: -

To convert the given decimal integer number to octal, successively divide the given number

Given Binary number 010 1111 1011 . 0111 11

Group of 3 bits are = 0010 1111 1011 . 0111 1100

Convert each group into octal = 2 F B . 7 C

The result is (2FB.7C)16

by 8 till the quotient is 0. To convert the given decimal fractions to octal successively

multiply the decimal fraction and the subsequent decimal fractions by 8 till the product is 0 or

till the required accuracy is obtained.

For example:

(i) Convert (378.93)10 into octal.

Solution:

8 I378 0.93 x 8 = 7.44

8 l 47 ― 2 0.44 x 8 = 3.52

8 l 5 ― 7 0.52 x 8 = 4.16

0 ― 5 0.16 x 8 = 1.28

Result of (378.93)10 is (572.7341)8

Decimal to hexadecimal conversion: -

The decimal to hexadecimal conversion is same as octal.

 For example:

(i) Convert (2598.675)10 into hexadecimal

Remainder

16 I2598

Decimal Hex Hex

 0.675 x 16 = 10.8 A

16 l 162 — 6 6 0.800 x 16 = 12.8 C

16 l 10
0

— 2
— 10

2

A
0.800 x 16 = 12.8
0.800 x 16 = 12.8

C

C

Result of (2598.675)10 is (A26.ACCC) 16

3-OCTAL NUMBERS SYTEM: -
Octal to binary conversion: -

To convert a given a octal number to binary, replace each octal digit by its 3- bit binary

equivalent.

For example:

Convert (367.52)8 into binary.

Solution:

Given Octal number is

3

6 7 . 5 2

Convert each group octal to

binary
= 011 110 111 . 101 010

Result of (367.52)8 is (011110111.101010)2

Octal to decimal conversion: -

For conversion octal to decimal number, multiply each digit in the octal number by the

weight of its position and add all the product terms .

For example: -

Convert (4057.06) 8 to decimal Solution:

8 – 1 + 6 x 8-2 (4057.06)8 = 4 x 83 + 0 x 82 + 5 x 81 + 7 x 80 + 0
x

=
=

2048 + 0 + 40 + 7 + 0 +0.0937
(2095. 0937)10

Octal to hexadecimal conversion: -

✓ For conversion of octal to Hexadecimal, first convert the given octal number to

binary and then binary number to hexadecimal.
For example: -

Convert (756.603)8 to hexadecimal.

Solution:-

Given octal no. 7 5 6 . 6 0 3

Convert each octal digit to binary = 111 101 110 . 110 000 011

Group of 4bits are = 0001 1110 1110 . 1100 0001 1000

Convert 4 bits group to hex.

Result is (1EE.C18)16

= 1 E E . C 1 8

4 HEXADECIMAL NUMBER SYSTEM: -
Hexadecimal to binary conversion: -

✓ For conversion of hexadecimal to binary, replace hexadecimal digit by its 4 bit binary

group.

For example:

Convert (3A9E.B0D)16 into binary.

Solution:

Given Hexadecimal number is

3

A 9

E .B

0 D

Convert each hexadecimal= 0011 1010 1001 1110. 1011 0000 1101 digit to 4 bit binary
Result of (3A9E.B0D)8 is (0011101010011110.101100001101)2

Hexadecimal to decimal conversion: -

✓ For conversion of hexadecimal to decimal, multiply each digit in the hexadecimal

number by its position weight and add all those product terms.

For example: -

Convert (A0F9.0EB)16 to decimal

Solution:

(A0F9.0EB)16 = (10 x 163)+(0 x 162)+(15 x 161) +(9 x 160) +(0 x 16 – 1) +(14 x 16- 2)

+(11 x 16-3)

=40960 + 0 + 240 + 9 + 0 +0.0546 + 0.0026

=(41209.0572)10

Result is (41209.0572)10

Hexadecimal to Octal conversion: -

✓ For conversion of hexadecimal to octal, first convert the given hexadecimal number to

binary and then binary number to octal.

For example: -

Convert (B9F.AE)16 to octal.

Solution:-

Given hexadecimal no.is

B

9 F

.

A

E

Convert each hex. digit to binary = 1011 1001 1111 . 1010 1110

Group of 3 bits are = 101 110 011 111 . 101 011 100

Convert 3 bits group to octal. = 5 6 3 7 . 5 3 4

Result is (5637.534)8

1.2 Binary addition, subtraction, multiplication and division

Arithmetic operation: -
BINARY ADDITION: -

The binary addition rules are as follows

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 10, i.e. 0 with a carry of 1

For example: -

Add (100101)2 and (1101111)2.

Solution: -

 1 0 0 1 0 1

 + 1 1 0 1 1 1 1

 1 0 0 1 0 1 0 0

Result is (10010100)2

2-BINARY SUBTRACTION: -

The binary subtraction rules are as follows

0 - 0 = 0

1 - 1 = 0

1 - 0 = 1, 0 - 1 = 1, with a borrow of 1

 For example: -

Subtract (111.111)2 from (1010.01)2.

Solution: -

 1 0 1 0. 0 1 0

- 1 1 1. 1 1 1

 0 0 1 0 .0 1 1

Result is (0010.011)2

BINARY MULTIPLICATION: -

The binary multiplication rules are as follows

 0 x 0 = 0

1 x 1 = 1

1 x 0 = 0 and

 0 x 1 = 0

For example: -

Multiply (1101)2 by (110)2.

 Solution: -

 1 1 0 1

x 1 1 0

 0 0 0 0

 1 1 0 1

+ 1 1 0 1

1 0 0 1 1 1 0

Result is (1001110)2

BINARY DIVISION: -

✓ The binary division is very simple and similar to decimal number system. The

division by ‘0’ is meaningless. So we have only 2 rules

0 ÷ 1 = 0

1 ÷ 1 = 1

For example: -

Divide (10110)2 by (110)2.

110) 101101 (111.1

- 110

1010

 110

1001

 110

110
 110

00

Result is (111.1)2

1.3-1s complement and 2s complement numbers for binary

number
1’s complement representation-

✓ The 1’s complement of a binary number is obtained by changing each 0 to 1 and each

1 to 0.

For example: -

Find (1100)2 1’s complement. Solution: -

 Given 1 1 0 0

 1’s complement is 0 0 1 1

 Result is (0011)2

2’s complement representation: -

✓ The 2’s complement of a binary number is a binary number which is obtained by

adding 1 to the 1’s complement of a number i.e. 2’s complement = 1’s complement +

1

For example: -

Find (1010)2 2’s complement

Given 1 0 1 0

1’s complement is 0 1 0 1

+ 1

2’s complement 0 1 1 0

Result is (0110)2

1.4-Subtraction of binary numbers in 1s and 2s complement

method
Subtraction using complement method: -
1s complement: -

✓ In 1’s complement subtraction, add the 1’s complement of subtrahend to the minuend.

If there is a carry out, then the carry is added to the LSB. This is called end around

carry. If the MSB is 0, the result is positive. If the MSB is 1, the result is negative and

is in its 1‘s complement form. Then take its 1’s complement to get the magnitude in

binary.

Subtract (10000)2 from

(11010)2 using 1’s complement.

Solution: -

1 1 0 1 0 1 1 0 1 0 = 26

- 1 0 0 0 0 => + 01111 (1’s complement) = - 16

 Carry → 1 0 1 0 0 1 + 10

 + 1
 01010

= +10

Subtraction of binary numbers in 2s complement method

Subtraction using complement method:-

2’s complement: -

✓ In 2’s complement subtraction, add the 2’s complement of subtrahend to the minuend.

✓ If there is a carry out, ignore it. If the MSB is 0, the result is positive.

✓ If the MSB is 1, the result is negative and is in its 2‘s complement form.

✓ Then take its 2’s complement to get the magnitude in binary

For example: -

Subtract (1010100)2 from (1010100)2 using 2’s complement.

 1 0 1 0 1 0 0 1 0 1 0 1 0 0 = 84

- 1 0 1 0 1 0 0 => + 0 1 0 1 1 0 0 (2’s complement) = - 84_

 1 0 0 0 0 0 0 0 (Ignore the carry) 0

 = 0 (result =
Hence MSB is 0. The answer is positive. So it is +0000000 =0

1.5-Use of weighted and unweighted codes and write binary

equivalent numbers in 8421,Excess-3 and gray code and vice

versa
Digital codes: -

✓ In practice the digital electronics requires to handle data which may be numeric,

alphabets and special characters.

✓ This requires the conversion of the incoming data into binary format before it can be

processed. There is various possible ways of doing this and this process is called

encoding.

✓ To achieve the reverse of it, we use decoders.

Weighted and non-weighted codes: -
There are two types of binary codes

 1-Weighted binary codes

 2-non-weighted binary codes

Weighted binary codes
✓ In weighted codes, for each position (or bit), there is specific weight attached.

✓ For example, in binary number, each bit is assigned particular weight 2n where ‘n’

is the bit number for n = 0,1,2,3,4 the weights are 1,2,4,8,16 respectively.

✓ Example: - BCD CODE, 2421

Non- weighted binary codes
✓ Non-weighted codes are codes which are not assigned with any weight to each digit

position, i.e., each digit position within the number is not assigned fixed value.

✓ Example: - Excess – 3 (XS -3) code and gray codes

Excess three (xs-3) code:-
✓ The Excess-3 code, also called XS-3, is a non- weighted BCD code.

✓ This derives it name from the fact that each binary code word is the corresponding

8421 code word plus 0011(3). It is a sequential code. It is a self-complementing code.

Gray code: -

✓ The gray code is a non-weighted code. It is not a BCD code. It is cyclic code because

successive words in this differ in one bit position only i.e. it is a unit distance code.

✓ Gray code is used in instrumentation and data acquisition systems where linear or

angular displacement is measured. They are also used in shaft encoders, I/O devices,

A/D converters and other peripheral equipment.

 Binary-to–gray conversion: -
✓ If an n-bit binary number is represented by Bn Bn-1 - - - - - B1 and its gray code

equivalent by Gn Gn-1 G1,

 where Bn and Gn are the MSBs , then gray code bits are obtained from the binary

code as

 follows Gn= Bn
Gn-1 = Bn EX-OR Bn-1

.

.

.

.

G1 = B2 EX-ORB1

For example

Convert the binary 1001 to the gray code.

Binary → 1 0 0 1

Gray → 1 1

The gray code is 1101

Gray-to-binary conversion: -
✓ If an n-bit gray number is represented by Gn Gn-1 ------- G1 and its binary equivalent

by Bn Bn1 B1,

 then binary bits are obtained from gray bits as follows:

Bn = Gn
Bn-1 = Bn EX-ORGn-1 B1 = B2 EX-ORG1

For example: -

(11100)Gray Code = (?)2

Solution:

Gray code : 11100

(Gray code to Binary)

b4=g4=1

b3=b4⊕g3=1⊕1=0

b2=b3⊕g2=0⊕1=1

b1=b2⊕g1=1⊕0=1

b0=b1⊕g0=1⊕0=1

∴ Binary : 10111

1.6-Importance of Parity bit
✓ A parity bit, or check bit, is a bit added to a string of binary code. Parity bits are a

simple form of error detecting code. Parity bits are generally applied to the smallest

units of a communication protocol, typically 8-bit octets (bytes), although they can

also be applied separately to an entire message string of bits.

✓ The parity bit ensures that the total number of 1-bits in the string is even or odd.[1]

Accordingly, there are two variants of parity bits: even parity bit and odd parity bit. In

the case of even parity, for a given set of bits, the occurrences of bits whose value is 1

are counted.

✓ If that count is odd, the parity bit value is set to 1, making the total count of

occurrences of 1s in the whole set (including the parity bit) an even number.

✓ If the count of 1s in a given set of bits is already even, the parity bit's value is 0. In the

case of odd parity, the coding is reversed.

7 bits of

data

(count of 1-

bits)

8 bits including parity

even

odd

00000

00

0

000000

00

000000

01

https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Binary_code
https://en.wikipedia.org/wiki/Error_detection_and_correction
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Even_and_odd_numbers
https://en.wikipedia.org/wiki/Even_and_odd_numbers
https://en.wikipedia.org/wiki/Even_and_odd_numbers
https://en.wikipedia.org/wiki/Even_and_odd_numbers

10100

01

3

101000

11

101000

10

11010

01

4

110100

10

110100

11

11111

11

7

111111

11

111111

10

1.7-Logic Gates And, Or, Not,Nand,Nor And Ex-Or Gate With

Truth Table:-
✓ Logic gates are the fundamental building blocks of digital systems. There are 3 basic

types of gates AND, OR and NOT.

✓ Logic gates are electronic circuits because they are made up of a number of electronic

devices and components.

✓ Inputs and outputs of logic gates can occur only in 2 levels. These two levels are

termed HIGH and LOW, or TRUE and FALSE, or ON and OFF or simply 1 and 0.

✓ The table which lists all the possible combinations of input variables and the

corresponding outputs is called a truth table.

Different types of logic gates: not gate (inverter):-
✓ A NOT gate, also called and inverter, has only one input and one output. It is a device

whose output is always the complement of its input.

✓ The output of a NOT gate is the logic 1 state when its input is in logic 0 state and the

logic 0 state when its inputs is in logic 1 state.

✓ IC No. :- 7404

Logic Symbol

Truth table

INPUT
A

OUTPUT

A’

0 1

1 0

AND Gate: -

✓ An AND gate has two or more inputs but only one output.

✓ The output is logic 1 state only when each one of its inputs is at logic 1 state. The

output is logic 0 state even if one of its inputs is at logic 0 state.

✓ IC No.:- 7408

Logic Symbol

INPUT OUTPUT

A B Y=A.B

0 0 0

0 1 0

1 0 0

1 1 1

OR gate:-

✓ An OR gate may have two or more inputs but only one output.

✓ The output is logic 1 state, even if one of its input is in logic 1 state.

✓ The output is logic 0 state, only when each one of its inputs is in logic state.

✓ IC No.:- 7432

Logic Symbol

INPUT OUTPUT

A B Y=A+B

0 0 0

0 1 1

1 0 1

1 1 1

NAND gate:-

✓ NAND gate is a combination of an AND gate and a NOT gate.

✓ The output is logic 0 when each of the input is logic 1 and for any other combination

of inputs, the output is logic 1.

✓ IC No.:- 7400

✓ two input NAND gate 7410

✓ three input NAND gate 7420

✓ four input NAND gate 7430

Logic Symbol-

INPUT OUTPUT

A B Y=A.B

0 0 0

0 1 1

1 0 1

1 1 1

NOR GATE:-

✓ NOR gate is a combination of an OR gate and a NOT gate.

✓ The output is logic 1, only when each one of its input is logic 0 and for any other

combination of inputs, the output is a logic 0 level.

✓ IC No.:- 7402 two input NOR gate

✓ 7427 three input NOR gate

✓ 7425 four input NOR gate

Logic Symbol Truth Table

EXCLUSIVE – OR (X-OR) GATE:-

✓ An X-OR gate is a two input, one output logic circuit.

✓ The output is logic 1 when one and only one of its two inputs is logic 1. When both

the inputs is logic 0 or when both the inputs is logic 1, the output is logic 0.

✓ IC No.:- 7486

Logic Symbol

INPUTS are A and B OUTPUT is Q = A B

= A’ B + A B’

Truth Table

Input Output

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

EXCLUSIVE – NOR (X-NOR) GATE:-

✓ An X-NOR gate is the combination of an X-OR gate and a NOT gate. An X-NOR gate

is a two input, one output logic circuit.

✓ The output is logic 1 only when both the inputs are logic 0 or when both the inputs is 1.

The output is logic 0 when one of the inputs is logic 0 and other is 1.

✓ IC No.:- 74266

Logic Symbol

INPUT OUTPUT

A B Q= A +

B

0 0 1

0 1 0

1 0 0

1 1 0

OUT =A’ B’ + A B

 = A XNOR B

Input Output

A B Y

0 0 1

0 1 0

1 0 0

1 1 1

1.8-UNIVERSAL GATES & ITS REALISATION:-

Introduction

✓ There are 3 basic gates AND, OR and NOT, there are two universal gates NAND and

NOR, each of which can realize logic circuits single handedly.

✓ The NAND and NOR gates are called universal building blocks. Both NAND and

NOR gates can perform all logic functions i.e. AND, OR, NOT, EXOR and EXNOR

NAND GATE:-

Inverter from NAND gate

Input = A Output Q = A’

AND gate from NAND gate

Input s are A and B Output Q = A.B

OR gate from NAND gate

Inputs are A and B Output Q = A+B

NOR gate from NAND gate

 Inputs are A and B

Output Q = A+B

EX-OR gate from NAND gate

Inputs are A and B

Output Q = A B + AB

EX-NOR gate From NAND gate

Inputs are A and B Output Q = A B + A B

NOR GATE

Inverter from NOR gate

Input = A

Output Q = A

AND gate from NOR gate

Input s are A and B

Output Q = A.B

OR gate from NOR gate

Inputs are A and B Output Q = A+B

NAND gate from NOR gate

Inputs are A and B

Output Q = (A.B)’

EX-OR gate from NOR gate

Inputs are A and B Output Q = A’ B + A B’

EX-NOR gate From NOR gate

Inputs are A and B

 Output Q = A’ B’ + A B

1.9-Different postulates and De-Morgan’s thermos in Boolean

algebra
Introduction

✓ Switching circuits are also called logic circuits, gates circuits and digital circuits.

Switching algebra is also called Boolean algebra.

✓ Boolean algebra is a system of mathematical logic. It is an algebraic system

consisting of the set of elements (0, 1), two binary operators called OR and AND and

unary operator called NOT.

✓ It is a way to express logic functions algebraically.

✓ Any complex logic can be expressed by a Boolean function.

✓

1.10-Use of Boolean algebra for simplification of logic expression

✓ Axioms or postulates of Boolean algebra are set of logical expressions that are

accepted without proof and upon which we can build a set of useful theorems.

✓ Actually, axioms are nothing more than the definitions of the three basic logic

operations AND, OR and INVERTER.

✓ Each axiom can be interpreted as the outcome of an operation performed by a logic

gate.

 AND Rule

 0.0=0

 0.1=0

 1.0=0

 1.1=1

 OR Rule

 0+0=0

 0+1=1

 1+0=1

 1+1=1

 NOT Rule

 1=0

 0=1

Complementation Laws:-

The term complement simply means to invert, i.e. to changes 0s to 1s and 1s to 0s.

The five laws of complementation are as follows:

Law 1: 0 ‘= 1

Law 2: 1’ = 0
 Law 3: if A = 0, then A’ = 1
Law 4: if A = 1, then A’ = 0
Law 5: A’’ = 0 (double complementation law
OR Laws:-

The four OR laws are as follows

 Law 1: A + 0 = A(Null law)

 Law 2: A + 1 = 1(Identity law)

 Law 3: A + A = A

 Law 4: A +A = 1

AND Laws:-

The four AND laws are as follows

 Law 1: A . 0 = 0(Null law)

Law 2: A . 1 = 1(Identity law)

 Law 3: A . A = A

Law 4: A .A = 0

Commutative Laws:-

Commutative laws allow change in position of AND or OR variables. There are two

commutative laws.

 Law 1: A + B = B + A

 Proof

=

Law 2: A . B = B . A

Proof

=

This law can be extended to any number of variables. For example A.B. C = B. C. A = C. A.

B = B.

A B A + B

0 0 0

0 1 1

1 0 1

1 1 1

B A B+ A

0 0 0

0 1 1

1 0 1

1 1 1

A B A . B

0 0 0

0 1 0

1 0 0

1 1 1

B A B. A

0 0 0

0 1 0

1 0 0

1 1 1

Associative Laws:-

The associative laws allow grouping of variables. There are 2 associative laws. Law 1: (A +

B) + C = A + (B + C)

Proof

=

Law 2: (A .B) C = A (B .C)

A B C AB (AB)C

 0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 1 0

1 1 1 1 1

This law can be extended to any number of variables.

For example A(BCD) = (ABC)D = (AB) (CD)
Distributive Laws:-

The distributive laws allow factoring or multiplying out of expressions. There are two

distributive laws. Law 1: A (B + C) = AB + AC

Proof

=

A B C B.C A(B.C)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

A B C A+B (A+B)+C

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

A B C B+C A+(B+C)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 0 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

A B C AB AC A+(B+C)

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 1 1 1

A B C B+C A(B+C)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

De Morgan’s Theorem:-
De Morgan’s theorem represents two laws in Boolean algebra. Law 1:(A + B)’ =A’∙ B

Proof

This law states that the complement of a sum of variables is equal to the product of their

individual complements.

Law 2: (A∙ B)’ = A’ + B’ Proof

This law states that the complement of a product of variables is equal to the sum of their

individual complements.

DUALITY

Given expression

1. 0’ = 1 1’ = 0
2. 0 ∙1 = 0 1 + 0 = 1

3. 0 ∙0 = 0 1 + 1 = 1

4. 1 ∙1 = 1 0 + 0 = 0

5. A ∙ 0 = 0 A + 1 = 1

6. A ∙ 1 = A A + 0 = A

7. A ∙ A = A A + A = A

8. A ∙ A = 0 A + A = 1

9. A ∙ B = B ∙ A A + B = B+ A

10. A ∙ (B ∙ C)=(A ∙ B) ∙ C A + (B + C)=(A + B) +

C

11. A ∙ (B + C) = AB + AC A + BC = (A + B) (A +

C)

12. A(A + B) = A A + AB = A

A B A . B A . B

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

A B A B

A + B

0 0 1 1 1

0 1 1 0 1

1 0 0 1 1

1 1 0 0 0

A B A B A

B

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 0 0 0

A B A +

B

A +

B

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

13. A ∙ (A ∙ B) = A ∙ B A+ A + B = A + B
14. AB = A + B A + B = A B
15. (A + B) (A+ C) (B + C) = (A+ B)(A + C) AB + AC + BC = AB +
AC
16. A + BC = (A + B)(A + C) A(B+ C) = A B +A C
17. (A+C)(A+B) = AB+AC AC+AB=(A+B) (A+C)

18. (A+B)(C+D) = AC + AD + BC + BD (AB+CD) =
(A+C)(A+D)(B+C)(B+D)

19. A+B=AB+ AB + AB AB=(A+B)(A+B) (A+B)

20. AB + A + AB = 0 A + B ∙ A ∙ (A + B) = 1

1.11-Karlaugh Map for 2, 3, 4 variables, simplification of SOP and

POS logic expression using K-Map

✓ This is also called disjunctive Canonical Form (DCF) or Expanded Sum of Products

Form or Canonical Sum of Products Form.

✓ In this form, the function is the sum of a number of products terms where each

product term contains all variables of the function either in complemented or un

complemented form.

✓ This can also be derived from the truth table by finding the sum of all the terms that

corresponds to those combinations for which ‘f ’ assumes the value 1.

For example

f(A, B, C) = A’B + B’C

= A’B (C + C’) + B’C (A + A’)

= A BC + ABC + ABC + ABC

✓ The product term which contains all the variables of the functions either in

complemented or un complemented form is called a minterm.

✓ The minterm is denoted as mo, m1, m2

✓ An ‘n’ variable function can have 2n minterms.

✓ Another way of representing the function in canonical SOP form is the showing the

sum of minterms for which the function equals to 1.

For example

f (A, B, C) = m1 + m2+ m3 + m5 or

f (A, B, C) =∑ m (1, 2, 3, 5)

where ∑m represents the sum of all the minterms whose decimal codes are given the

parenthesis.

Product- of-sums form:-

✓ This form is also called as Conjunctive Canonical Form (CCF) or Expanded Product

of – Sums Form

 or Canonical Product Of Sums Form.

✓ This is by considering the combinations for which f = 0 Each term is a sum of all the

variables.

The function f (A, B, C) = (A + B + C∙C) + (A + B + C∙C)

 = (A + B + C) (A + B + C) (A + B + C) (A + B + C)

✓ The sum term which contains each of the ‘n’ variables in either complemented or un

complemented form is called a maxterm.

✓ Maxterm is represented as M0, M1, M2,

✓ Thus CCF of ‘f’ may be written as f(A, B, C)= M0 ∙ M4 ∙ M6∙ M7 or

✓ f(A, B, C) = (0, 4, 6, 7)

✓ Where represented the product of all maxterms.

Conversion between canonical form:-

✓ The complement of a function expressed as the sum of minterms equals the sum of

minterms missing from the original function.

Example:-

f(A, B, C) = ∑m(0,2,4,6,7)

This has a complement that can be expressed as

f (A, B, C)’ =∑ m(1, 3, 5) = m1 + m3 + m5

If we complement f by De- Morgan’s theorem we obtain ‘f’ in a form. f =(m1+ m3 + m5)’ =

m1’. m3’. m5’

= M1 M3 M5 =∏ M(1, 3 ,5)

Karnaugh map or k-map & minimisation of logical expressions, don’t

Care conditions:-

✓ The K- map is a chart or a graph, composed of an arrangement of adjacent cells,

each representing a particular combination of variables in sum or product form.

✓ The K- map is systematic method of simplifying the Boolean expression.

Two variable k-map:-

✓ A two variable expression can have 22 = 4 possible combinations of the input variables

A and B.

Mapping of SOP Expression:-

✓ The 2 variable K-map has 22 = 4 squares. These squares are called cells.

✓ A ‘1’ is placed in any square indicates that corresponding minterm is included in the

output expression, and a 0 or no entry in any square indicates that the corresponding

min term does not appear in the expression for output.

Example of 2 Variable K-Map

Function F (A, B)

F = ∑ (m0, m1, m2) = A̅B̅ +A̅B +AB̅

The simplifies expression will be the sum of these two terms as given below,

F = A̅ + B̅

 3-Variable K-Map

✓ variables make 2n=23=8 min terms, so the Karnaugh map of 3 variables will have 8

squares(cells) as shown in the figure given below.

Some examples of grouping:

We can make groups of 2, 4 & 8 cells having same 1s or 0s.

Example of 3 Variable K-Map

F (A,B,C) = ∑ (m0, m1, m2, m4, m5, m6)

The sum of these two terms will make the simplified expression of the function is

F = B̅ + C̅

https://www.electricaltechnology.org/wp-content/uploads/2018/04/Karnaugh-map-of-3-variables.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/Karnaugh-map-of-3-variables.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/3-Variable-K-map-groups-of-2-4-8-cells-having-1s-or-0s.png

4-variable K-Map

✓ A four variable (A, B, C, D) expression can have 24 = 16 possible combinations of

input variables.

✓ A four variable K-map has 24 = 16 squares or cells and each square on the map

represents either a minterm or a maxterm as shown in the figure below.

✓ The binary number designations of the rows and columns are in the gray code.

✓ The binary numbers along the top of the map indicate the conditions of C and D

along any column and binary numbers along left side indicate the conditions of A

and B along any row.

✓ The numbers in the top right corners of the squares indicate the minterm or maxterm

designations.

✓ 4 variables have 2n=24=16 minterms. So a 4-variable k-map will have 16 cells as

shown in the figure given below.

✓

Some example of grouping in 4-variable k-map is given .

Example of 4 Variable K-Map

F(A,B,C,D) = ∑(m0, m1, m2, m4, m5, m6, m8, m9, m12, m13, m14)

So the expression will be

F = C̅ + B̅D̅ + A̅D̅

DON’T CARE COMBINATIONS: -

✓ The combinations for which the values of the expression are not specified are called

don’t care combinations or optional combinations and such expression stand

incompletely specified.

✓ The output is a don’t care for these invalid combinations. The don’t care terms are

denoted by d or X.

✓ During the process of designing using SOP maps, each don’t care is treated as 1 to

reduce the map otherwise it is treated as 0 and left alone.

✓ During the process of designing using POS maps, each don’t care is treated as 0 to

reduce the map otherwise it is treated as 1 and left alone.

✓ A standard SOP expression with don’t cares can be converted into standard POS form

by keeping the don’t cares as they are, and the missing minterms of the SOP form

https://www.electricaltechnology.org/wp-content/uploads/2018/04/example-of-grouping-in-4-variable-k-map.png
https://www.electricaltechnology.org/wp-content/uploads/2018/04/4-variable-k-map-Example.png

are written as the maxterms of the POS form.

✓ Similarly, to convert a standard POS expression with don’t cares can be converted

into standard SOP form by keeping the don’t cares as they are, and the missing

maxterms of the POS form are written as the minterms of the SOP form.

Example:-

Reduce the expression f = ∑ m(1, 5, 6, 12, 13, 14) + d(2, 4) using K- map.

 Solution:-

The given expression in SOP form is f = ∑ m (1, 5, 6, 12, 13, 14) + d(2, 4)

The given expression in POS form is f = π M (0, 3, 7, 8, 9, 10, 11,15) + d(2, 4)

The minimal of SOP expression is fmin = BC + BD +ACD

The minimal of POS expression is fmin = (B + D)(A + B) (C + D)

Possible Short Type Questions With Answers

1. Convert (10101)2 to decimal.

 Solution :

(Positional weight) 24 23 22 21 20 Binary number 10101

= (1 x 24) + (0 x 23) + (1x 22) + (0 x 21) + (1 x 20)

= 16 + 0+ 4+ 0+ 1

= (21)10

2. Convert (1011011011)2 into hexadecimal.

Solution:

Given Binary number 10 1101 1011

Group of 4 bits are 0010 1101 1011

Convert each group into hex = 2 D B

The result is (2DB)16

3. What do you mean by radix of a number. (W-20 Exam)

Solution-

The base of each number system is also called the radix. The radix of a decimal

number is ten, and the radix of binary is two.

4. Find 2’s complement of (110101.01)2. (W-20 Exam)

Solution

1’s complement is 001010.10

2’s complement is 001010.10

 + 1

 00101011

5. Subtract (111.111)2 from (1010.01)2

.Solution :-

1 0 1 0 . 0 1 0

 1 1 1 . 1 1 1

 0 0 1 0 .0 1 1

Result is (0010.011)2

6. Find (1100)2 1’s complement.

 Solution :-

7. Convert the binary 1001 to the Gray code.

 Solution :-`

Binary → 1 0 0 1

Gray → 1 1 0 1

The gray code is 1101

8. Define Don’t care condition

The combinations for which the values of the expression are not specified are

called don’t care combinations or optional combinations and such expression

stand incompletely specified.

The output is a don’t care for these invalid combinations. The don’t care terms

are denoted by d or X.

Possible Long Questions

1- Find out the logic expression for f=m(0,1,2,3,5,7,8,9,10,12,13) using K-

Map.

2- What are the universal gate? Derive other gate using any one of the

universal gate.

3- Draw the logic diagram of the following Boolean expression.

Y=AB(C+BD).

4 - Which gates are referred to a universal gate and why?

5- State and prove De-Morgan’s Theorem. [W-20]

6- Minimize the four variable logic expression using K-MAP. [W-20]

Given 1 1 0 0

1’s complement is 0 0 1 1

CHAPTER 2

COMBINATIONAL LOGIC CIRCUITS

LEARING OBJECTIVES:

2.1-Give the concept of Combinational circuits

2.2-Half adder circuit and verify its functionality using truth table.

2.3-Realize a half adder using NAND gate only and NOR gate only.

2.4-Full adder circuit and explain its operation with truth table.

2.5-Realize full adder using two half adder and OR gate and write truth table.

2.6-Full subtractor circuit and explain its operation with truth table.

2.7-Operation of 4X1 Multiplexers and 1X4 demultiplexer.

2.8-Working of Binary-Decimal Encoder and 3x8 Decoder.

2.9-Working of Two-bit magnitude comparator.

2.1. Give the Cocept Of Combinational circuits

✓ A combinational circuit consists of logic gates whose outputs at any time are

determined from only the present combination of inputs. .

✓ The n input binary variables come from an external source; the m output variables are

produced by the internal combinational logic circuit and go to an external destination.

✓ Each input and output variable exists physically as an analog signal whose values are

interpreted to be a binary signal that represents logic 1and logic 0.

2.2-Half adder circuit and verify its functionality using truth table.

Half Adder

✓ This circuit needs two binary inputs and two binary outputs.

✓ The input variables designate the augend and addend bits; the output variables

produce the sum and carry. Symbols x and y are assigned to the two inputs and S (for

sum) and C (for carry) to the outputs.

✓ The C output is 1 only when both inputs are 1. The S output represents the least

significant bit of the sum.

✓ The simplified Boolean functions for the two outputs can be obtained directly

✓ . The simplified sum-of-products expressions are

 S = x’y + xy’

 C = xy

✓ The logic diagram of the half adder implemented in sum of products is shown in the

below figure. It can be also implemented with an exclusive-OR and an AND gate

2.3-Realize a half adder using NAND gate only and NOR gate only

Half adder using NAND gate only

✓ As we know that NAND and NOR are called universal gates as any logic system can

be implemented using these two.

✓ The Half Adder Circuit can also be implemented using them. We know that a half

adder circuit has one Ex – OR gate and one AND gate.

Half Adder using NOR gate only

Five NOR gates are required in order to design a half adder. The circuit to realize half adder

using NOR gates is shown below

2.4-Full adder circuit and explain its operation with truth table

Full adder

✓ Full adder is a combinational circuit design to add more than two single bit number

with carry

✓ It consists of three inputs and two outputs. Two of the input variables, denoted by x

and y , represent the two significant bits to be added.

✓ The third input, z , represents the carry from the previous lower significant position.

✓ The two output are designated by the symbol S for sum and for carry.

The simplified expressions are

S = x’y’z + x’yz’ + xy’z’ + xyz

C = xy + xz + yz

2.5-Realize full adder using two half adder and OR gate and write

truth table

Full Adder using two Half Adder

Truth Table for full Adder

Logical Expression for SUM:

= A’ B’ C-IN + A’ B C-IN’ + A B’ C-IN’ + A B C-IN

= C-IN (A’ B’ + A B) + C-IN’ (A’ B + A B’)

= C-IN XOR (A XOR B)

= (1,2,4,7)

Logical Expression for C-OUT:

= A’ B C-IN + A B’ C-IN + A B C-IN’ + A B C-IN

= A B + B C-IN + A C-IN

= (3,5,6,7)

Another form in which C-OUT can be implemented:

= A B + A C-IN + B C-IN (A + A’)

= A B C-IN + A B + A C-IN + A’ B C-IN

= A B (1 +C-IN) + A C-IN + A’ B C-IN

= A B + A C-IN + A’ B C-IN

= A B + A C-IN (B + B’) + A’ B C-IN

= A B C-IN + A B + A B’ C-IN + A’ B C-IN

= A B (C-IN + 1) + A B’ C-IN + A’ B C-IN

= A B + A B’ C-IN + A’ B C-IN

= AB + C-IN (A’ B + A B’)

Therefore COUT = AB + C-IN (A EX – OR B)

Block Diagram of full Adder using Two half Adder

2.6-Full subtractor circuit and explain its operation with truth table

Full subtractor

✓ A full subtractor is a combinational circuit that forms the arithmetic subtraction

operation of three bits.

✓ It consists of three inputs and two outputs. Two of the input variables, denoted by x

and y , represent the two significant bits to be subtracted. The third input, z , is

subtracted from the result 0f the first subtraction

✓ The two outputs are designated by the symbols D for difference and B for borrow.

✓ The binary variable D gives the value of the least significant bit of the difference. The

binary variable B gives the output borrow formed during the subtraction process.

 .

The simplified expressions are

D = x’y’z + x’yz’ + xy’z’ + xyz

B = x’z + x’y + yz

Logic Diagram

2.7-Operation of 4X1 Multiplexers and 1X4 demultiplexer

Multiplexer

✓ A multiplexer is a combinational circuit that selects binary information from one of

many input lines and directs it to a single output line.

✓ The selection of a particular input line is controlled by a set of selection lines.

✓ Normally, there are 2n input lines and n selection lines whose bit combinations

determine which input is selected.

✓ A multiplexer is also called a data selector, since it selects one of many inputs and

steers the binary information to the output

From the Truth Table Output Y=S0’S1’I0+S0’ S1 I1+S0 S1’ I2+S0 S1 I3

1x4 De-MUX

✓ The data distributor, known more commonly as a Demultiplexer or “Demux” for

short, is the exact opposite of the Multiplexer.

✓ The demultiplexer takes one single input data line and then switches it to any

one of a number of individual output lines one at a time.

✓ The demultiplexer converts a serial data signal at the input to a parallel data at its

output lines

✓ The Boolean expression for this 1-to-4 demultiplexer above with outputs A to D

and data select lines a, b is given as:

 F = a’b’A + a’bB + ab’C + abD

According to Truth table

Y0=E S1’ S0’ Din

Y1=E S1’ S0 Din

Y2=E S1 S0’ Din

Y3=E S1 S0 Din

Logic Diagram

2.8-Working of Binary-Decimal Encoder and 3x8 Decoder

Binary-Decimal Encoder

✓ Encoders are used as code converters in computer systems.

✓ These are available as IC’s in the market.

✓ To convert a decimal number into binary a Decimal to BCD Encoder is used.

✓ In the BCD system, the decimal number is represented as the four-digit binary.

✓ It can convert the decimal numbers from 0 to 9 into the binary stream.The encoder is

a combinational logic circuit.

✓ The reverse of the encoder is a decoder that performs the reverse action.

✓ The truth table of Decimal to BCD encoder is given below,

From the truth table above form the equations for the words A3, A2, A1, A0. Thus the logical

equations are as below-

A3 = 8+9: A2 = 4+5+6+7 : A1 =2+3+6+7 : A0= 1+3+5+7+9

Now, considering the logic equations above, form the combinational circuit with OR gates.

3x8 Decoder

✓ A decoder is a combinational logic circuit that is used to change the code into a set of

signals. It is the reverse process of an encoder.

✓ A decoder circuit takes multiple inputs and gives multiple outputs. A decoder circuit

takes binary data of ‘n’ inputs into ‘2^n’ unique output.

✓ In 3 to 8 line decoder, it includes three inputs and eight outputs. Here the inputs are

represented through A, B & C whereas the outputs are represented through D0, D1,

D2…D7.

✓ The selection of 8 outputs can be done based on the three inputs. So, the truth table of

this 3 line to 8 line decoder is shown below.

✓ From the following truth table, we can observe that simply one of 8 outputs from DO

– D7 can be selected depending on 3 select inputs.

From the above truth table of 3 lines to 8 line decoder, the logic expression can be defined as

D0 = A’B’C’

D1= A’B’C

D2 = A’BC’

D3 = A’BC

D4 = AB’C’

D5= AB’C

D6 = ABC’

D7 = ABC

From the above Boolean expressions, the implementation of 3 to 8 decoder circuit can be

done with the help of three NOT gates & 8-three input AND gates.

In the above circuit, the three inputs can be decoded into 8 outputs, where every output

represents one of the midterms of the three input variables.

3 Line to 8 Line Decoder Block Diagram

The decoder circuit works only when the Enable pin (E) is high. S0, S1 and S2 are three

different inputs and D0, D1, D2, D3. D4. D5. D6. D7 are the eight outputs. The logic diagram

of the 3 to 8 line decoder is shown below.

2.9-Working of Two-bit magnitude comparator

Comparator

✓ A magnitude digital Comparator is a combinational circuit that compares two digital

or binary numbers in order to find out whether one binary number is equal, less than

or greater than the other binary number.

✓ We logically design a circuit for which we will have two inputs one for A and other

for B and have three output terminals, one for A > B condition, one for A = B

condition and one for A < B condition.

Two-bit magnitude comparator

✓ A comparator used to compare two binary numbers each of two bits is called a 2-bit

Magnitude comparator.

✓ It consists of four inputs and three outputs to generate less than, equal to and greater

than between two binary numbers.

✓ The truth table for a 2-bit comparator is given below:

From the above truth table K-map for each output can be drawn as follows:

From the above K-maps logical expressions for each output can be expressed as follows:

A>B:A1B1’ + A0B1’B0’ + A1A0B0’

A=B: A1’A0’B1’B0’ + A1’A0B1’B0 + A1A0B1B0 + A1A0’B1B0’

 : A1’B1’ (A0’B0’ + A0B0) + A1B1 (A0B0 + A0’B0’)

 : (A0B0 + A0’B0’) (A1B1 + A1’B1’)

 : (A0 Ex-Nor B0) (A1 Ex-Nor B1)

A<B:A1’B1 + A0’B1B0 + A1’A0’B0

By using these Boolean expressions, we can implement a logic circuit for this comparator as

given below:

Possible Short Type Questions with Answers

1. What is combinational circuit? Give an example ?

Ans: A combinational circuit consists of logic gates whose outputs at any time

are determined from the present combination of inputs.

Examples of combinational circuits are adder, coder, magnitude comparator etc.

2. What are the universal gates ?

Ans: NAND and NOR are universal gates, because they replace all the other gates

in a circuit.

3. What is demux ?

Ans: Demultiplexer is a circuit that receives information on a single line and

transmits this information on one of 2n possible output lines. A demultiplexer is

a decoder with an enable input.

4. Write the procedural steps for the design of combinational circuits.

 Ans: The design of combinational circuit starts from a specification of the

problem culminates in a logic diagram or set of Boolean equations from which

the logic diagram can be obtained.

The procedure involves the following steps:

✓ From the specifications of the circuit, determine the required number of

inputs and outputs, and assign a letter symbol to each.

✓ Derive the truth table that defines the required relation ship between inputs

and outputs.

✓ Obtain the simplified Boolean functions of each output as function of the

input variables.

✓ Draw the logic diagram.

5. What is the difference between combinational and Sequential Logic

Circuit ? (w-20)

Ans : Combinationa logic Circuit

• In this output depends only upon present input.

• Speed is fast.

• It is designed easy.

• There is no feedback between input and output.

 Sequential Logic Circuit

• In this output depends upon present as well as past input.

• Speed is slow.

• It is designed tough as compared to combinational circuits.

• There exists a feedback path between input and output.

6. Distinguish between a Multiplexer and Demultiplexer . (w-20)

Ans : A multiplexer (Mux) is a combinational circuit that uses several data

inputs to generate a single output.

A demultiplexer (Demux) is also a combinational circuit that uses single input

that can be directed throughout several outputs.

Possible Long Type Questions

1. What is Half Adder ? Design a Full Adder Circuit using Half Adder and

OR Gate. (w-20)

2. Explain the function of 1:4 Demux circuit with a neat diagram and write

its truth table. (w-20)

3. Design a 2 bit magnitude comparator circuit and explain its operation. (w-

20)

4. Realize full subtractor circuit and explain its operation with truth table.

CHAPTER 3-

SEQUENTIAL LOGIC CIRCUITS
LEARING OBJECTIVES:

3.1- Give the idea of Sequential Logic Circuits.

3.2- State the necessary of clock and give the concept of level clocking and edge triggering.

3.3- Clocked SR flipflop with preset and clear inputs.

3.4- Construct level clocked JK flipflop using SR flipflop and explain with truth table.

3.5- Concept of Race around condition and study of master slave JK flipflop.

3.6- Give the truth tables of edge triggered D and T flipflop and draw their symbols.

3.7- Applications of flipflops.

3.8- Define modulus of a counter.
3.9- 4 bit asynchronous counter and its timing diagram.

3.10- Asynchronous decade counter.

3.11- 4 bit Asynchronous counter.

3.12- Distinguish between Synchronous and Asynchronous Counter.

3.13- State the need for a Register and lists the four types of Registers.

3.14- Working of SISO, SIPO, PISO, PIPO Register with truth table using flipflop.

3.1-Give the idea of sequential logic circuit

SEQUENTIAL CIRCUIT : -

It is a circuit whose output depends upon the present input, previous output and the sequence in which the

inputs are applied.

DIFFERENCE BETWEEN SLC AND CLC :-

✓ In combinational circuit output depends upon present input at any instant of time and do not use

memory.

✓ Hence previous input does not have any effect on the circuit. But sequential circuit has memory

and depends upon present input and previous output.

✓ Sequential circuits are slower than combinational circuits and these sequential circuits are harder to

design.

✓ The data stored by the memory element at any given instant of time is called the present

state of sequential circuit.

3.2-State the necessity of clock and give the concept of level clocking and edge

triggering;-
Principle Of F/F Operation, Its Types

types:-
Sequential logic circuits (SLC) are classified as

✓ Synchronous SLC

✓ Asynchronous SLC

 The SLC that are controlled by clock are called synchronous SLC and those which are not controlled by a clock

are asynchronous SLC.

Clock:- A recurring pulse is called a clock.

FLIP-FLOP AND LATCH:-

✓ A flip-flop or latch is a circuit that has two stable states and can be used to store information.

✓ A flip-flop is a binary storage device capable of storing one bit of information. In a stable state, the

output of a flip-flop is either 0 or 1.

✓ Latch is a non-clocked flip-flop and it is the building block for the flip-flop.

✓ Storage element that operate with signal level are called latches and those operate with clock transition

are called as flip-flops.

 A flip-flop is called so because its output either flips or flops meaning to switch back and forth.

 A flip-flop is also called a bi-stable multi-vibrator as it has two stable states. The input

signals which command the flip-flop to change state are called excitations.
 Flip-flops are can store 1 or 0.

 Flip-flops using the clock signal are called clocked flip-flops. Control signals are effective

only if they are applied in synchronization with the clock signal.

 Clock-signals may be positive-edge triggered or negative-edge triggered.

 Positive-edge triggered flip-flops are those in which state transitions take place only at

positive- going edge of the clock pulse.

 Negative-edge triggered flip-flops are those in which state transition take place only at negative- going

edge of the clock pulse.

 Some common type of flip-flops include

✓ SR (set-reset) F-F

✓ D (data or delay) F-F

✓ T (toggle) F-F and

✓ JK F-F

3.3-Clocked SR Flip-Flop with preset and clear input SR F/F USING

NAND,NOR LATCH (UNCLOCKED)
✓ The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates.

✓ It has two outputs labeled Q and Q’. Two inputs are there labeled S for set and R for reset. The latch has

two useful states.

✓ When Q=0 and Q’=1 the condition is called reset state and when Q=1 and Q’=0 the condition is called

set state.

✓ Normally Q and Q’ are complement of each other.
✓ The figure represents a SR latch with two cross-coupled NOR gates.

✓ We know if any one of the input for a NOR gate is HIGH then its output will be LOW and if both

the inputs are LOW then only the output will be HIGH.

✓ The first condition (S = 1, R = 0) is the action that must be taken by input S to bring the circuit to the

set state. Removing the active input from S leaves the circuit in the same state.

✓ After both inputs return to 0, it is then possible to shift to the reset state by momentary applying a 1 to

the R input. The 1 can then be removed from R, whereupon the circuit remains in the reset state.

✓ When both inputs S and R are equal to 0, the latch can be in either the set or the reset state, depending

on which input was most recently a 1.

✓ If a 1 is applied to both the S and R inputs of the latch, both outputs go to 0.

✓ This action produces an undefined next state, because the state that results from the input transitions

depends on the order in which they return to 0.

✓ It also violates the requirement that outputs be the complement of each other.

✓ In normal operation, this condition is avoided by making sure that 1’s are not applied to both inputs

simultaneously.
 Truth table for SR latch designed with NOR gates is shown below.

Input Output Comment

S R Q Q’ QNext Q’Next

0 0 0 1 0 1 No change

0 0 1 0 1 0

0 1 0 1 0 1 Reset

0 1 1 0 0 1

1 0 0 1 1 0 Set

1 0 1 0 1 0

1 1 0 1 X X Prohibited

state 1 1 1 0 X X

Symbol for SR NOR Latch

Racing Condition:-
In case of a SR latch when S=R=1 input is given both the output will try to become 0. This is called
Racing condition.

SR latch using NAND gate:-

✓ The below figure represents a SR latch with two cross-coupled NAND gates.

✓ The circuit has NAND gates and as we know if any one of the input for a NAND gate is LOW

then its output will be HIGH and if both the inputs are HIGH then only the output will be LOW.

✓ It operates with both inputs normally at 1, unless the state of the latch has to be changed. The

application of 0 to the S input causes output Q to go to 1, putting the latch in the set state.

✓ When the S input goes back to 1, the circuit remains in the set state. After both inputs go back

to 1, we are allowed to change the state of the latch by placing a 0 in the R input.

✓ This action causes the circuit to go to the reset state and stay there even after both inputs return to

1.

✓ The condition that is forbidden for the NAND latch is both inputs being equal to 0 at the same time, an

input combination that should be avoided.

✓ In comparing the NAND with the NOR latch, note that the input signals for the NAND require the

complement of those values used for the NOR latch.

✓ Because the NAND latch requires a 0 signal to change its state, it is sometimes referred to as an S’R’

latch.

✓ The primes (or, sometimes, bars over the letters) designate the fact that the inputs must be in their

complement form to activate the circuit.

✓ The above represents the symbol for inverted SR latch or SR latch using NAND gate. Truth table for SR

latch using NAND gate or Inverted SR latch

S R Qnext Q’next

0 0 Race Race

0 1 0 1 (Reset)

1 0 1 0 (Set)

1 1 Q (No change) Q’ (No change)

3.4-Construct level clocked JK Flip-Flop using SR Flip-Flop and explain

with truth table
Clocked SR, D, JK, T, MSJK Flip-Flop Symbol, Logic Circuit, Truth Table, and

Applications
 One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to ensure

that inputs S and R are never equal to 1 at the same time.

✓ This is done in the D latch. This latch has only two inputs: D (data) and En (enable).

✓ The D input goes directly to the S input, and its complement is applied to the R input.

(Symbol for D-Latch)

✓ As long as the enable input is at 0, the cross-coupled SR latch has both inputs at the 1 level and the

circuit can’t change state regardless of the value of D.

✓ The below represents the truth table for the D-latch.

En D Next State of Q

0 X No change

1 0 Q=0;Reset State

1 1 Q=1;Set State

The D input is sampled when En = 1. If D = 1, the Q output goes to 1, placing the circuit in the set state. If

D = 0, output Q goes to 0, placing the circuit in the reset state. This situation provides a path from input

D to the output, and for this reason, the circuit is often called a TRANSPARENT latch.

TRIGGERING METHODS:-

✓ The state of a latch or flip-flop is switched by a change in the control input. This momentary change

is called a trigger, and the transition it causes is said to trigger the flip-flop.

✓ Flip-flop circuits are constructed in such a way as to make them operate properly when they are part

of a sequential circuit that employs a common clock.

✓ The problem with the latch is that it responds to a change in the level of a clock pulse. For proper

operation of a flip-flop it should be triggered only during a signal transition.

✓ This can be accomplished by eliminating the feedback path that is inherent in the operation of the

sequential circuit using latches. A clock pulse goes through two transitions: from 0 to 1 and the return

from 1 to 0.

✓ A ways that a latch can be modified to form a flip-flop is to produce a flip-flop that triggers only

during a signal transition (from 0 to 1 or from 1 to 0) of the synchronizing signal (clock) and is

disabled during the rest of the clock pulse.

3.5-Concept of race around condition and study of master slave JK Flip-Flop

JK FLIP-FLOP:-
✓ The JK flip-flop can be constructed by using basic SR latch and a clock. In this case the outputs Q and

Q’ are returned back and connected to the inputs of NAND gates.

✓ This simple JK flip Flop is the most widely used of all the flip-flop designs and is considered to be a

universal flip-flop circuit.

✓ The sequential operation of the JK flip flop is exactly the same as for the previous SR flip-flop with

the same “Set” and “Reset” inputs.

✓ The difference this time is that the “JK flip flop” has no invalid or forbidden input states of the SR

Latch even when S and R are both at logic “1”.
(The below diagram shows the circuit diagram of a JK flip-flop)

✓ The JK flip flop is basically a gated SR Flip-flop with the addition of a clock input circuitry that

prevents the illegal or invalid output condition that can occur when both inputs S and R are equal to

logic level “1”.

✓ Due to this additional clocked input, a JK flip-flop has four possible input combinations, “logic 1”,

“logic 0”, “no change” and “toggle”.

MASTER-SLAVE JK FLIP-FLOP:-

✓ The Master-Slave Flip-Flop is basically two gated SR flip-flops connected together in a series

configuration with the slave having an inverted clock pulse.

✓ The outputs from Q and Q’ from the “Slave” flip-flop are fed back to the inputs of the “Master” with

the outputs of the “Master” flip flop being connected to the two inputs of the “Slave” flip flop.

✓ This feedback configuration from the slave’s output to the master’s input gives the characteristic

toggle of the JK flip flop as shown below.

✓ The Master-Slave JK Flip Flop

✓ The input signals J and K are connected to the gated “master” SR flip flop which “locks” the input

condition while the clock (Clk) input is “HIGH” at logic level “1”.

✓ As the clock input of the “slave” flip flop is the inverse (complement) of the “master” clock input,

the “slave” SR flip flop does not toggle.

✓ The outputs from the “master” flip flop are only “seen” by the gated “slave” flip flop when the clock

input goes “LOW” to logic level “0”.

✓ When the clock is “LOW”, the outputs from the “master” flip flop are latched and any additional

changes to its inputs are ignored.

✓ The gated “slave” flip flop now responds to the state of its inputs passed over by the “master” section.

✓ Then on the “Low-to-High” transition of the clock pulse the inputs of the “master” flip flop are

fed through to the gated inputs of the “slave” flip flop and on the “High-to-Low” transition the same

inputs are reflected on the output of the “slave” making this type of flip flop edge or pulse-triggered.

✓ Then, the circuit accepts input data when the clock signal is “HIGH”, and passes the data to the

output on the falling-edge of the clock signal.

✓ In other words, the Master-Slave JK Flip flop is a “Synchronous” device as it only passes data with

the timing of the clock signal.

RACING CONDITION ;-

In JK F/F when J=K=1, and clock =1 for a longer period of time, then Q output will toggle as long as CLK=1

HIGH, which makes the output of the f/f unstableor uncertain. This problem is called race around condition.

In can be avoided by using MSJK F/F.

The symbol for a JK flip flop is similar to that of an SR bistable latch except the clock input.

(The above diagram shows the symbol of a JK flip-flop.)

✓ Both the S and the R inputs of the SR bi-stable have now been replaced by two inputs called the J and

K inputs, respectively after its inventor Jack and Kilby. Then this equates to: J = S and K = R.

✓ The two 2-input NAND gates of the gated SR bi-stable have now been replaced by two 3-input

NAND gates with the third input of each gate connected to the outputs at Q and Q’.

✓ This cross coupling of the SR flip-flop allows the previously invalid condition of S = “1” and R = “1”

state to be used to produce a “toggle action” as the two inputs are now interlocked.

✓ If the circuit is now “SET” the J input is inhibited by the “0” status of Q’ through the lower NAND

gate. If the circuit is “RESET” the K input is inhibited by the “0” status of Q through the upper NAND

gate. As Q and Q’ are always different we can use them to control the input.

Truth table for JK flip- flop

Inp Outp Comment

J K Q Qn

0 0 0 0 No change

0 0 1 1

0 1 0 0 Reset

0 1 1 0

1 0 0 1 Set

1 0 1 1

1 1 0 1 Toggle

1 1 1 0

 When both inputs J and K are equal to logic “1”, the JK flip flop toggles.

3.6-Give the truth table of edge trigger D and T Flip-Flop and draw their

symblos

T FLIP-FLOP:-

✓ Toggle flip-flop or commonly known as T flip-flop.

✓ This flip-flop has the similar operation as that of the JK flip-flop with both the inputs J and K are

shorted i.e. both are given the common input.

 Hence its truth table is same as that of JK flip-flop when J=K= 0 and
J=K=1.So its truth table is as follows.

T

Q Qn

ext

Comment

0

0 0 No change
1 1

1

0 1 Toggles
1 0

CHARACTERISTIC TABLE:-

✓ A characteristic table defines the logical properties of a flip-flop by describing its operation in

tabular form.

✓ The next state is defined as a function of the inputs and the present state.

✓ Q (t) refers to the present state and Q (t + 1) is the next.

✓ Thus, Q (t) denotes the state of the flip-flop immediately before the clock edge, and Q(t + 1) denotes

the state that results from the clock transition.

✓ The characteristic table for the JK flip-flop shows that the next state is equal to the present state when

inputs J and K are both equal to 0. This condition can be expressed as Q (t + 1) = Q (t), indicating

that the clock produces no change of state.

Characteristic Table Of JK Flip-Flop

J K Q(t+1)

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 Q’(t) Complement

✓ When K = 1 and J = 0, the clock resets the flip-flop and Q(t + 1) = 0. With J = 1 and K = 0, the

flip-flop sets and Q(t + 1) = 1. When both J and K are equal to 1, the next state changes to the

complement of the present state, a transition that can be expressed as Q(t + 1) = Q’(t).

✓ The characteristic equation for JK flip-flop is represented as

 Q(t+1)= JQ’ + K’Q

Characteristic Table of D Flip-Flop

D Q(t+1)

0 0

1 1

 The next state of a D flip-flop is dependent only on the D input and is independent of the present state.

 This can be expressed as Q (t + 1) = D. It means that the next-state value is equal to the value of D. Note

that the D flip-flop does not have a “no-change” condition and its characteristic equation is written as

Q(t+1)=D.

Characteristic Table of T Flip-Flop

T Q(t+1)

0 Q(t) No change

1 Q’(t) Complement

✓ The characteristic table of T flip-flop has only two conditions: When T = 0, the clock edge does not

change the state; when T = 1, the clock edge complements the state of the flip-flop and the eqn is

3.7-Application of Flip-Flop

Registers

✓ Registers are the devices which are meant to store the data. As known, each flip-flop can store a

single-bit of information.

✓ This means that by cascading n flip-flops, one can store n bits of information. Such an arrangement is

called an n-bit register.

✓ For example by cascading three D flip-flops as shown in Figure 1, one can store three bits of

information (B3, B2 and B1), thus forming a 3-bit buffer register.

✓ The data stored in the registers can be moved stage-wise within the registers and/or in/out of the

register by applying clock pulses. Such a register is called shift register.

✓ There are various kinds of shift registers depending on the mode of data-shift viz., serial-in serial-out

register, serial-in parallel-out register, parallel-in serial-out register, parallel-in parallel- out register.

✓ Further depending on the direction of data movement they can be either left-shift and/or right-shift in

nature

3.8- Define modulus of a counter

Modulus Counter

✓ A modulus counter is that which produces an output pulse after a certain number of input pulses

is applied.

✓ In modulus counter the total count possible is based on the number of stages, i.e., digit positions

✓ Modulus counters are used in digital computers.

✓ A binary modulo-8 counter with three flip-flops, i.e., three stages, will produce an output pulse,

i.e., display an output one-digit, after eight input pulses have been counted, i.e., entered or applied.

✓ This assumes that the counter started in the zero-condition.

3.9- Four bit Asynchronous Counter and its timing diagram Asynchronous

Counter

✓ An asynchronous (ripple) counter is a single d-type flip-flop, with its J (data) input fed from its own

inverted output.

✓ This circuit can store one bit, and hence can count from zero to one before it overflows (starts over

from 0).

https://www.electrical4u.com/latches-and-flip-flops/
https://www.electrical4u.com/d-flip-flop-or-d-latch/
https://www.electrical4u.com/shift-registers/

✓ This counter will increment once for every clock cycle and takes two clock cycles to overflow, so

every cycle it will alternate between a transition from 0 to 1 and a transition from 1 to 0.

✓ This creates a new clock with a 50% duty cycle at exactly half the frequency of the input clock.

✓ Additional flip-flops can be added, by always inverting the output to its own input, and using the

output from the previous flip-flop as the clock signal. The result is called a ripple counter, which can

count to 2
n
– 1, where n is the number of bits (flip-flop stages) in the counter.

✓ Ripple counters suffer from unstable outputs as the over flows "ripple" from stage to stage, but they

find application as dividers for clock signals.

3.10- Asynchronous Decade Counter Asynchronous Decade Counter

A decade counter can count from BCD “0” to BCD “9”.

✓ A decade counter requires resetting to zero when the output count reaches the decimal value of 10, ie.

when DCBA = 1010 and this condition is fed back to the reset input.

✓ A counter with a count sequence from binary “0000” (BCD = “0”) through to “1001” (BCD = “9”) is

generally referred to as a BCD binary-coded-decimal counter because its ten state sequence is that of a

BCD code but binary decade counters are more common.

✓ This type of asynchronous counter counts upwards on each leading edge of the input clock signal starting

from 0000 until it reaches an output 1001 (decimal 9).

✓ Both outputs QA and QD are now equal to logic “1” and the output from the NAND gate changes state

from logic “1” to a logic “0” level and whose output is also connected to the CLEAR (CLR) inputs of

all the J-K Flip-flops.

✓ This signal causes all of the Q outputs to be reset back to binary 0000 on the count of 10. Once QA and

QD are both equal to logic “0” the output of the NAND gate returns back to a logic level “1” and the

counter restarts again from 0000. We now have a decade or Modulo-10 counter.

Decade Counter Truth Table

Up/Down Counter

✓ In a synchronous up-down binary counter the flip-flop in the lowest-order position is complemented

with every pulse.

✓ A flip-flop in any other position is complemented with a pulse, provided all the lower-order pulse

equal to 0.

✓ Up/Down counter is used to control the direction of the counter through a certain sequence.

From the sequence table we can observe that:

✓ For both the UP and DOWN sequences, Q0 toggles on each clock pulse.

✓ For the UP sequence, Q1 changes state on the next clock pulse when Q0=1.

✓ For the DOWN sequence, Q1 changes state on the next clock pulse when Q0=0.

✓ For the UP sequence, Q2 changes state on the next clock pulse when Q0=Q1=1.

✓ For the DOWN sequence, Q2 changes state on the next clock pulse when Q0=Q1=0.

✓ These characteristics are implemented with the AND, OR & NOT logic connected as shown in the

logic diagram above.

3.11-Four bit synchronous counter

Binary 4-bit Synchronous Up Counter

✓ It can be seen above, that the external clock pulses (pulses to be counted) are fed directly to each of

the J-K flip-flops in the counter chain and that both the J and K inputs are all tied together in toggle

mode, but only in the first flip-flop, flip- flop FFA (LSB) are they connected HIGH, logic “1”

allowing the flip-flop to toggle on every clock pulse. Then the synchronous counter follows a

predetermined sequence of states in response to the common clock signal, advancing one state for

each pulse.

✓ The J and K inputs of flip-flop FFB are connected directly to the output QA of flip-flop FFA, but

the J and K inputs of flip- flops FFC and FFD are driven from separate AND gates which are also

supplied with signals from the input and output of the previous stage. These additional AND gates

generate the required logic for the JK inputs of the next stage.

✓ If we enable each JK flip-flop to toggle based on whether or not all preceding flip-flop outputs (Q)

are “HIGH” we can obtain the same counting sequence as with the asynchronous circuit but without

the ripple effect, since each flip-flop in this circuit will be clocked at exactly the same time.

✓ Then as there is no inherent propagation delay in synchronous counters, because all the counter

stages are triggered in parallel at the same time, the maximum operating frequency of this type of

frequency counter is much higher than that for a similar asynchronous counter circuit.

4-bit Synchronous Counter Waveform

[Timing Diagram]

https://www.electronics-tutorials.ws/sequential/seq_2.html

3.12-Distinguish between synchronous and asynchronous counters

S.NO Synchronous Counter Asynchronous Counter

1.

In synchronous counter, all flip

flops are triggered with same

clock simultaneously.

In asynchronous counter, different flip flops are triggered

with different clock, not simultaneously.

2.

Synchronous Counter is faster

than asynchronous counter in

operation.

Asynchronous Counter is slower than synchronous counter

in operation.

3.

Synchronous Counter does not

produce any decoding errors.

Asynchronous Counter produces decoding error.

4.

Synchronous Counter is also

called Parallel Counter.

Asynchronous Counter is also called Serial Counter.

 Synchronous Counter designing

as well implementation are

complex due to increasing the

number of states.

Asynchronous Counter designing as well as

implementation is very easy.

 5.

6.

Synchronous Counter will

operate in any desired count

sequence.

Asynchronous Counter will operate only in fixed count

sequence (UP/DOWN).

7.

Synchronous Counter

examples are: Ring counter,

Johnson counter.

Asynchronous Counter examples

are: Ripple UP counter, Ripple DOWN counter.

https://www.geeksforgeeks.org/digital-logic-ring-counter/
https://www.geeksforgeeks.org/digital-logic-ring-counter/
https://www.geeksforgeeks.org/digital-logic-n-bit-johnson-counter/
https://www.geeksforgeeks.org/digital-logic-ripple-counter/

.

3.13-State the need for a register and list the four type of register

✓ Registers are used for storage and transfer of binary information in a digital system.

✓ A register is mostly used for the purpose of storing and shifting binary data entered into it from

an external source and has no characteristics internal sequence of states.

✓ The storage capacity of a register is defined as the number of bits of digital data, it can store or retain.
✓ These registers are normally used for temporary storage of data.

CONTROLLED BUFFER REGISTER :-

✓ A number of FFs connected together such that data may be shifted into and shifted out of them is

called a shift register.

✓ Data may be shifted into or out of the register either in serial form or in parallel form.
✓ There are four basic types of shift registers

✓ Serial in, serial out

✓ Serial in, parallel out

✓ Parallel in, serial out

✓ Parallel in , parallel out

3.14-Working of SISO, SIPO, PISO, PIPO register with truth table using

Flip-Flop

SERIAL IN,SERIAL OUTSHIFT REGISTER:-

✓ This type of shift register accepts data serially, i.e., one bit at a time and also outputs data serially.

✓ In 4 stages i.e. with 4 FFs, the register can store up to 4 bits of data.

✓ Serial data is applied at the D input of the first FF. The Q output of the first FF is connected to

the D input of the second FF, the output of the second FF is connected to the D input of the third

FF and the Q output of the third FF is connected to the D input of the fourth FF. The data is outputted

from the Q terminal of the last FF.

✓ When a serial data is transferred to a register, each new bit is clocked into the first FF at the

positive going edge of each clock pulse.

✓ The bit that is previously stored by the first FF is transferred to the second FF.

✓ The bit that is stored by the second FF is transferred to the third FF, and so on.

✓ The bit that was stored by the last FF is shifted out.

✓ A shift register can also be constructed using

SERIAL IN PARALLEL OUT SHIFT REGISTER :-

✓ In this type of register, the data bits are entered into the register serially, but the data stored in

the register serially, but the stored in the register is shifted out in the parallel form.

✓ When the data bits are stored once, each bits appears on its respective output line and all bits

are available simultaneously, rather than bit – by – bit basis as in the serial output.

✓ The serial in, parallel out shift register can be used as a serial in, serial out shift register if the output

is taken from the Q terminal of the last FF.

✓ The logic diagram and logic symbol of a 4 bit serial in, parallel out shift register is given below.

[A 4- bit serial in, parallel out shift register]

PARALLEL IN SERIAL OUT SHIFT REGISTER:-

✓ For parallel in, serial out shift register the data bits are entered simultaneously into their respective

stages on parallel lines, but the data bits are transferred out of the register serially, i.e., on a bit by

bit basis over a single line.

✓ The logic diagram and logic symbol of 4 bit parallel in, serial out shift register using D FFs is

shown below.

✓ There are four data lines A, B, C and D through which the data is entered into the register in

parallel form.

✓ The signal Shift /LOAD allows

✓ The data to be entered in parallel form into the register and

✓ The data to be shifted out serially from terminal Q4.

✓ When Shift /LOAD line is HIGH, gates G1, G2, and G3 are disabled, but gates G4, G5 and G6

are enabled allowing the data bits to shift right from one stage to next.

✓ When Shift /LOAD line is LOW, gates G4, G5 and G6 are disabled, whereas gates G1, G2 and G3

are enabled allowing the data input to appear at the D inputs of the respective FFs.

✓ When clock pulse is applied, these data bits are shifted to the Q output terminals of the FFs

and therefore the data is inputted in one step.

✓ The OR gate allows either the normal shifting operation or the parallel data entry depending on

which AND gates are enabled by the level on the Shift /LOAD input.

[A 4- bit parallel in, serial out shift register]

PARALLEL IN PARALLEL OUT SHIFT REGISTER:-

✓ In a parallel in, parallel out shift register, the data entered into the register in parallel form and also the

data taken out of the register in parallel form. Immediately following the simultaneous entry of all

data bits appear on the parallel outputs.

✓ The figure shown below is a 4 bit parallel in parallel out shift register using D FFs.

✓ Data applied to the D input terminals of the FFs.

✓ When a clock pulse is applied at the positive edge of that pulse, the D inputs are shifted into the Q

outputs of the FFs.

✓ The register now stores the data.
✓ The stored data is available instantaneously for shifting out in parallel form .

[Logic diagram of a 4 – bit parallel in, parallel out shift register]

Possible Short Type Questions with Answers

1. What is Flip Flop ?

Ans- A flip flop is an electronic circuit with two stable states that can be used to store

binary data. The stored data can be changed by applying varying inputs. Flip-flops and

latches are fundamental building blocks of digital electronics systems used in computers,

communications, and many other types of systems

2. Define modulus of a counter .(w-20)

Ans- The modulus of a counter is the number of states in its count sequence. The maximum

possible modulus is determined by the number of flip-flops. For example, a four-bit counter

can have a modulus of up to 16 (2^4).

3. List the types of shift register .

Ans- Basic shift registers are classified by structure according to the following types:

Serial-in/serial-out. Parallel-in/serial-out. Serial-in/parallel-out.

Universal parallel-in/parallel-out. Ring counter

4. Define race around condition. (w-20)

Ans- Race Around Condition in JK Flip-flop

For J-K flip-flop, if J=K=1, and if clk=1 for a long period of time, then output Q will toggle

as long as CLK remains high which makes the output unstable or uncertain. This is called a

race around condition in J-K flip-flop

5. Define SR Flipflop.

Ans- SR flip-flop is a gated set-reset flip-flop. The S and R inputs control the state of the

flip-flop when the clock pulse goes from LOW to HIGH. The flip-flop will not change until

the clock pulse is on a rising edge. When both S and R are simultaneously HIGH, it is

uncertain whether the outputs will be HIGH or LOW.

Possible Long Type Questions

1-What is race around condition? Explain Master slave JK FF.

 2-Explain working of 4 bit ripple counter and draw its timing diagram. (w-20)

3-Explain the working of SIPO and TIPO register with the help of suitable logic diagram.

 4-Design MOD-8 counter with neat circuit diagram.

5.Draw the diagram of D-FF and explain the working with function table.

6.Explain the working of JK flipflop with the truth Table. (w-20)

 LEARING OBJECTIVES:

CHAPTER-4

8085 Microprocessor

4.1-Introduction to Microprocessors, Microcomputers.

4.2-Architecture of Intel 8085a Microprocessor and description of each block.

4.3-Pin Diagram and description.

4.4-Stack, Stack Pointer, Stack top.

4.5-Interrupts.

4.6-Opcode and Operand.

4.7-Differentiate between one byte, two byte & three-byte instruction with

example.

4.8-Instruction set of 8085 with example.

4.9-addressing mode of 8085.

5.10-Fetch cycle, Machine cycle, Instruction cycle, T-state.

5.11-Timing diagram for Memory read, Memory write, I/O read, I/O write

Machine cycle.

5.12-Timing Diagram for 8085 Instruction.

4.13-Counter and time delay.

4.14-Simple assembly language programming of 8085

4.1-Introduction to Microprocessors, Microcomputers.

Introduction:

✓ A microprocessor is a programmable electronics chip that has computing and

decision-making capabilities similar to central processing unit of a computer.

✓ Any microprocessor- based systems having limited number of resources are called

microcomputers.

✓ Nowadays, microprocessor can be seen in almost all types of electronics devices like

mobile phones, printers, washing machines etc. Microprocessors are also used in

advanced applications like satellites and flights.

Microcomputer:

✓ Microcomputer is an Electronics Device

✓ A computer system generally consists of the following units

1-Input device

2-Output device

3-CPU

4- Memory Unit

✓ Block diagram of Digital computer.

✓ Input unite consists of input devices like keyboard mouse etc.

✓ Output unite consists of output device like Printer Monitor etc.

✓ Control unit(CPU) Control all the action of computer which consists of memory unit,

Arithmetic & logic unit.

Microprocessor:

✓ Microprocessor is one of the most important components of Digital computer.

✓ It acts as a brain of the computer.

✓ Microprocessor is the electronic device and it is situated in the CPU.

✓ Using this processor, we execute the program.so it is called programable integrated

circuit.

Important Term in Microprocessor:

✓ Bit: A bit is a single binary digit.

✓ Word: A word refers to the basic data size or bit size that can be processed by the

arithmetic and logic unit of the processor. A 16-bit binary number is called a word ina

16-bit processor.

✓ Bus: A bus is a group of wires/lines that carry similar information.

✓ Memory Word: The number of bits that can be stored in a register or memory

element is called a memory word.

Difference between Microprocessor and Microcomputer:

1- Microprocessor is one component of amicrocomputer.

2- Microprocessor is a programmable integrated circuit

which has its own decision making capability.

Example-8085, INTEL8086,8088,8008,8080 etc.

1-A digital computer in which one

microprocessor is used as a CPU known as

microcomputer.

2-Microcomputer uses a microprocessor

for its processing operation .

Example-Desktop, Laptop, Note Book etc.

Application of Microprocessor:

✓ There are many applications of Microprocessor which is used in -control seven

segment LED display like Microprocessor based Traffic light control.

✓ Controlling of Stepper motor, TV remote, Microprocessor based home security

system.

4.2-Architecture of Intel 8085a Microprocessor and description of

each block.

Architecture of 8 Bit 8085 Microprocessor:

Description of Each Block:

✓ In 1975 INTEL corporation developed a more power full b bit MP by using NMOS

Technology know as INTEL 8085 Microprocessor.

✓ It is a 40 pin dual package IC fabricated on a single LSI chip.

✓ The INTEL 8085 uses a single +5 volt supply for its operation and its clock speed is

3 MHZ and clock cycle is 320 nano sec.

Physical components of 8085 Microprocessor:

✓ Register set.

✓ Bus interface unit (BIU).

✓ Arithmetic & logic unite (ALU).

✓ Instruction decoder & Machine cycle encoder.

✓ Timing and control unit.

✓ Interrupt and serial communication.

Program Counter (PC)

✓ This 16-bit register deals with sequencing the execution of instructions.

✓ This register is a memory pointer.

✓ The microprocessor uses this register to sequence the execution of the instructions.

✓ The function of the program counter is to point to the memory address from which the

next byte is to be fetched.

✓ When a byte is being fetched, the program counter is automatically incremented by

one to point to the next memory location.

Increment and Decrement register

✓ When the instruction is fetched the value of the program counter is increment and

decrement by the increment and decrement Register.

Bus Interface unit (BIU)

✓ BIU consist of Address buffer or Address bus , Address and data buffer or Address

and data bus.

✓ Address buffer or Address bus are A8-A15 and Address and Data bus are AD0-AD7.

✓ A8-A15 Address bus are used for MSB bits of memory Address.

✓ AD0-AD7, these lines are time multiplexed with address and date. They are used for

LSB of memory address.

Instruction Register (IR)

✓ The data fetch from memory is stored by IR register.

✓ IR only holds that type of data which is fetch from memory.

Instruction Decoder:

✓ Instruction Decoder Decode the instruction by 0 or 1

Timing and control unit:

✓ Timing and control unit provide the information through control signal to all the

register present in microprocessor.

✓ It controls the entire operation of the MP. So it is known as brain of the computer.

Arithmetic Logic Unit (ALU)

✓ The ALU performs the actual numerical and logical operations such as Addition

(ADD), Subtraction (SUB), AND, OR etc.

✓ It uses data from memory and from Accumulator to perform operations.

✓ The results of the arithmetic and logical operations are stored in the accumulator.

Register Set:

✓ The 8085 includes six registers, one accumulator and one flag register.

✓ It has two 16-bit registers: stack pointer and program counter.

✓ The 8085 has six general-purpose registers to store 8-bit data; these are identified as

B, C, D, E, H and L.

✓ They can be combined as register pairs - BC, DE and HL to perform some bit

operations.

✓ The programmer can use these registers to store or copy data into the register by

using data copy instructions.

Flag register:

✓ The ALU includes five flip-flops, which are set or reset after an operation according

to data condition of the result in the accumulator and other registers.

✓ The five-status flag of INTEL 8085 MP are—

✓ Zero (Z), Carry (CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags.

✓ Their bit positions in the flag register are shown in Fig.

✓ The microprocessor uses these flags to test data conditions.

Stack Pointer:

✓ The stack pointer is also a 16-bit register, used as a memory pointer.

✓ It points to a memory location in R/W memory, called stack.

✓ The beginning of the stack is defined by loading 16- bit address in the stack pointer.

✓ Stack-The Stack is a sequence of memory location set by a programmer to store

different element. So, it is known as Storage device.

✓ Stack works by LIFO (Last in First out) Operation.

Interrupt Control:

✓ INTA-Interrupt Acknowledgement.

✓ INTR-Interrupt Request

✓ If there is any Interrupt generated inside MP then the Interrupt signal send the request

to the Microprocessor.

✓ There are 5 Interrupt signal i.e TRAP,RST 7.5, RST 6.5, RST 5.5 and INTR.

Serial input and output control:

✓ It has two input/output pin that is SID & SOD

✓ SID stands for serial input data and SOD for serial output data.

4.3-Pin Diagram and description.

Properties:

✓ It is a 8-bit microprocessor

✓ Manufactured with N-MOS technology

✓ 40 pin IC package

✓ It has 16-bit address bus and thus has 216 = 64 KB addressing capability.

✓ Operate with 3 MHz single-phase clock.

✓ All the signals are classified into six Group that is

1- address bus

2-Data bus

3- Control & status signals

4- Power supply and frequency signals

5-Externally initiated signals

7-Serial I/O signals

Address and Data Buses:

✓ A8 – A15 (output, 3-state): Most significant eight bits of memory addresses and the

eight bits of the I/O addresses. These lines enter into tri-state high impedance state

during HOLD and HALT modes

✓ AD0 – AD7 (input/output, 3-state): Lower significant bits of memory addresses and

the eight bits of the I/O addresses during first clock cycle.

Control & Status Signals:

• ALE: Address latch enable

• RD: Read control signal.

• WR: Write control signal.

• IO/M, S1 and S0 : Status signals.

Power Supply & Clock Frequency:

✓ Vcc: +5 V power supply

✓ Vss: Ground reference

✓ X1, X2: A crystal having frequency of 6 MHz is connected at these two pins

✓ CLK: Clock output.

Externally Initiated and Interrupt Signals:

✓ RESET IN : When the signal on this pin is low, the PC is set to 0, the buses are tri-

stated and the processor is reset.

✓ RESET OUT: This signal indicates that the processor is being reset. The signal can

be used to reset other devices.

✓ READY: When this signal is low, the processor waits for an integral number of

clock cycles until it goes high.

✓ HOLD: This signal indicates that a peripheral like DMA (direct memory access)

controller is requesting the use of address and data bus.

✓ HLDA: This signal acknowledges the HOLD request.

✓ INTR: Interrupt request is a general-purpose interrupt.

✓ INTA: This is used to acknowledge an interrupt.

✓ RST 7.5, RST 6.5, RST 5,5 – restart interrupt: These are vectored interrupts and

have highest priority than INTR interrupt.

✓ TRAP: This is a non-maskable interrupt and has the highest priority

Serial I/O Signals:

✓ SID: Serial input signal. Bit on this line is loaded to D7 bit of register A using RIM

instruction.

✓ SOD: Serial output signal. Output SOD is set or reset by using SIM instruction.

4.4-Stack, Stack Pointer, Stack top.

Stack

✓ Stack is used to store and retrieve return addresses during function calls.

✓ It is also used to transfer arguments to a function. On a microprocessor it is also used

to store the status register contents before a context switch. The stack is a temporary

store for data.

✓ There are two types of stacks they are register stack and the memory stack.

Stack Pointer:

✓ The stack pointer is also a 16-bit register, used as a memory pointer.

✓ It points to a memory location in R/W memory, called stack.

✓ The beginning of the stack is defined by loading 16- bit address in the stack pointer.

✓ A stack (also called a pushdown stack) operates in a last-in/first-out sense.

✓ When a new data item is entered or "pushed" onto the top of a stack, the stack pointer

increments to the next physical memory address, and the new item is copied to that

address.

✓ When a data item is "pulled" or "popped" from the top of a stack, the item is copied

from the address of the stack pointer, and the stack pointer decrements to the next

available item at the top of the stack.

Stack top:

✓ The stack is a LIFO (last in, first out) data structure implemented in the RAM

area and is used to store addresses and data.

✓ when the microprocessor branches to a subroutine...... The Stack Pointer register will

hold the address of the top location of the stack is known as Stack top.

4.5-Interrupt

Interrupt Structure:

✓ Interrupt is the mechanism by which the processor is made to transfer control from its

current program execution to another program having higher priority.

✓ The interrupt signal may be given to the processor by any external peripheral device

Types of Interrupts:

✓ Interrupts are classified based on their mask ability, IVA and source. They are

classified as:

✓ Vectored and Non-Vectored Interrupts

✓ Vectored interrupts require the IVA to be supplied by the external device thatgives the

interrupt signal. This technique is vectoring, is implemented in number of ways.

✓ Non-vectored interrupts have fixed IVA for ISRs of different interrupt signals.

Maskable and Non-Maskable Interrupts

✓ Maskable interrupts are interrupts that can be blocked. Masking can be done by

software or hardware means.

✓ Non-maskable interrupts are interrupts that are always recognized; the corresponding

ISRs are executed.

Software and Hardware Interrupts

✓ Software interrupts are special instructions, after execution transfer the control to

predefined ISR.

✓ Hardware Interrupts and Priorities:

✓ 8085 have five hardware interrupts – INTR, RST 5.5, RST 6.5, RST 7.5 and TRAP.

4.6-opcode and Operand

Opcode:

✓ In computing, an opcode (abbreviated from operation code, also known as

instruction machine code, instruction code is the portion of a machine language

instruction that specifies the operation to be performed.

✓ Opcodes mean “operation codes”. An opcode is the first part of an instruction that

tells the computer what function to perform. Every computer has an operation code or

opcode for each of its functions.

Operand:

✓ An operand is the second part of the instruction, which tells the computer where to

find or store the data or instructions.

✓ The number of operands varies among computers.

✓ Each instruction tells the Control Unit of the CPU what to do and how to do it. The

operations are Arithmetic, Logical, Branch operation, etc depending upon the problem

that is given to the computers.

4.7-Differentiate between one byte, two byte & three-byte instruction

with example.

One byte, two byte & three-byte instruction with example.

✓ According to the length, the instruction of 8085 microprocessor is classified into 3

types.

✓ 1-Single byte instruction

✓ 2-Two-byte instruction

✓ 3-Three-byte instruction

Single byte instruction

✓ In single byte instruction only opcode is present, there is no operand.

✓ Examples-MOV A, B, ADD B, CMAIn these instructions only opcode is present so

these are the single byte instruction.

✓ The length of this instruction is 8 bits. Each instruction requires one memory location.

Two-byte instruction

✓ In two-byte instruction the first 8 bit indicates the opcode and next 8 bit indicates the

operand

✓ .Example MVI A,32H, ADI A,08H

✓ The length of this instruction is 16 bit that is the opcode is 8 bit and operand is 8 bits.

Each instruction requires two memory location.

Three-byte instruction

✓ Three instruction is the type of instruction in which the first 8 bit indicates the opcode

and next 2 bytes specified the operand which is 16 b it address.

✓ The low order address is represented in 2nd byte and the higherorders address

represented in the 3rd byte.

✓ Example-LBA 2050H, JMP 2085H

✓ This instruction would require 3 memory location to store the binary code.

4.8-Instruction set of 8085 with example.

Instruction set of 8085:

Instruction sets are instruction codes to perform some task. It is classified into five categories.

1-Control Instruction

2-Logical Instruction

3-Branching Instruction

4-Arithmatic Instruction

5- Data transfer Instruction

Control Instruction:

 Opcode Operand Meaning Explanation

NOP

None
No operation No operation is performed, i.e., the instruction is fetched

and decoded.

HLT

None

Halt and enter

wait state

The CPU finishes executing the current instruction and

stops further execution. An interrupt or reset is necessary to

exit from the halt state.

DI

None
Disable

interrupts

The interrupt enable flip-flop is reset and all the

interrupts are disabled except TRAP.

EI

None
Enable

interrupts

The interrupt enable flip-flop is set and all the interrupts

are enabled.

RIM

None
Read interrupt

mask

This instruction is used to read the status of interrupts

7.5, 6.5, 5.5 and read serial data input bit.

SIM

None
Set interrupt

mask

This instruction is used to implement the interrupts 7.5,

6.5, 5.5, and serial data output.

Logical Instruction:

 Opcode Operand Meaning Explanation

CMP

R

M

Compare the

register or memory

with the

accumulator

The contents of the operand (register or memory)

are M compared with the contents of the

accumulator.

CPI

8-bit data

Compare immediate

with the

accumulator

The second byte data is compared with the contents

of the accumulator.

ANA

R

M

Logical AND

register or memory

with the

accumulator

The contents of the accumulator are logically

AND with M the contents of the register or

memory, and the result is placed in the

accumulator.

ANI

8-bit data

Logical AND

immediate with the

accumulator

The contents of the accumulator are logically

AND with the 8-bit data and the result is placed in

the accumulator.

XRA

R

M

Exclusive OR

register or memory

with the

accumulator

The contents of the accumulator are Exclusive OR

with M the contents of the register or memory,

and the result is placed in the accumulator.

XRI

8-bit data

Exclusive OR

immediate with the

accumulator

The contents of the accumulator are Exclusive

OR with the 8-bit data and the result is placed in

the accumulator.

ORA

R

M

Logical OR register

or memory with the

accumulator

The contents of the accumulator are logically OR

with M the contents of the register or memory, and

result is placed in the accumulator.

ORI

8-bit data

Logical OR

immediate with the

accumulator

The contents of the accumulator are logically OR

with the 8-bit data and the result is placed in the

accumulator.

RLC

None

Rotate the

accumulator left

Each binary bit of the accumulator is rotated left by

one position. Bit D7 is placed in the position of D0

as well as in the Carry flag. CY is modified according

to bit D7.

RRC

None

Rotate the

accumulator right

Each binary bit of the accumulator is rotated right by

one position. Bit D0 is placed in the position of D7

as well as in the Carry flag. CY is modified according

to bit D0.

RAL

None

Rotate the

accumulator left

through carry

Each binary bit of the accumulator is rotated left by

one position through the Carry flag. Bit D7 is placed

in the Carry flag, and the Carry flag is placed in the

least significant position D0. CY is modified

according to bit D7.

RAR

None

Rotate the

accumulator right

through carry

Each binary bit of the accumulator is rotated right

by one position through the Carry flag. Bit D0 is

placed in the Carry flag, and the Carry flag is placed

in the most significant position D7. CY is modified

according to bit D0.

CMA

None
Complement

accumulator

The contents of the accumulator are

complemented. No flags are affected.

CMC

None
Complement carry The Carry flag is complemented. No other flags

are affected.

STC None Set Carry Set Carry

Branching Instruction:

 Opcode Operand Meaning Explanation

JMP

16-bit

address

Jump

unconditionally

The program sequence is

transferred to the memory

address given in the

operand.

16-bit

address

16-bit

address

Jump

conditionally

Unconditional

subroutine call

The program sequence is

transferred to the memory

address given in the operand

based on the specified flag of

the PSW.

The program sequence is

transferred to the memory

address given in the operand.

Before transferring, the

address of the next

instruction after CALL is

pushed onto the stack.

Opcode Description Flag

Status

JC
Jump on

Carry

CY=1

JNC
Jump on no

Carry

CY=0

JP
Jump on

positive

S=0

JM
Jump on

minus

S=1

JZ
Jump on

zero

Z=1

JNZ
Jump on no

zero

Z=0

JPE
Jump on

parity even

P=1

JPO
Jump on

parity odd

P=0

Opcode Description Flag

Status

CC
Call on

Carry

CY=1

CNC
Call on no

Carry

CY=0

CP
Call on

positive

S=0

CM
Call on

minus

S=1

CZ Call on zero Z=1

CNZ
Call on no

zero

Z=0

CPE
Call on

parity even

P=1

CPO
Call on

parity odd

P=0

RET

None

None

Return from

subroutine

unconditionally

Return from

subroutine

conditionally

The program sequence is

transferred from the

subroutine to the calling

program.

The program sequence is

transferred from the

subroutine to the calling

program based on the

specified flag of the PSW

and the program execution

begins at the new address.

Opcode Description Flag

Status

RC
Return on

Carry

CY=1

RNC
Return on

no Carry

CY=0

RP
Return on

positive

S=0

RM
Return on

minus

S=1

RZ
Return on

zero

Z=1

RNZ
Return on

no zero

Z=0

RPE
Return on

parity even

P=1

RPO
Return on

parity odd

P=0

PCHL

None

Load the

program

counter with

HL contents

The contents of registers H

& L are copied into the

program counter. The

contents of H are placed as

the high-order byte and the

contents of L as the low

order byte.

The RST instruction is used

as software instructions in a

program to transfer the

program execution to one of

the following eight locations.

RST 0-7 Restart

Instruction Restart

Address

RST 0 0000H

RST 1 0008H

RST 2 0010H

RST 3 0018H

RST 4 0020H

RST 5 0028H

RST 6 0030H

Interrupt Restart

Address

TRAP 0024H

RST 5.5 002CH

RST 6.5 0034H

RST 7.5 003CH

RST 7 0038H

Arithmetic Instruction:

The 8085 has additionally 4

interrupts, which can

generate RST instructions

internally and doesn’t

require any external

hardware. Following are

those instructions and their

Restart addresses −

Opcode Operand Meaning Explanation

R
ADD

M

Add register or

memory, to the

accumulator

The contents of the register or memory are

added to the contents of the accumulator

and the result is stored in the accumulator.

Example − ADD K.

R

ADC
M

Add register to the

accumulator with

carry

The contents of the register or memory &

M the Carry flag are added to the contents

of the accumulator and the result is stored

in the accumulator.

Example − ADC K

ADI

8- bit data

Add the immediate to

the accumulator

The 8-bit data is added to the contents of

the accumulator and the result is stored in

the accumulator.

 Example − ADI 55K

ACI

8-bit data

Add the immediate to

the accumulator with

carry

The 8-bit data and the Carry flag are

added to the contents of the accumulator

and the result is stored in the accumulator.

Example − ACI 55K

LXI

Reg. pair, 16bit data

Load the register pair

immediate

The instruction stores 16-bit data into

the register pair designated in the

operand.

Example − LXI K, 3025M

DAD

Reg. pair

Add the register pair

to H and L registers

The 16-bit data of the specified register

pair are added to the contents of the

HL register.

Example − DAD K

SUB

R

M

Subtract the register

or the memory from

the accumulator

The contents of the register or the

memory are subtracted from the contents

of the accumulator, and the result is stored

in the accumulator.

Example − SUB K

SBB

R

M

Subtract the source

and borrow from the

accumulator

The contents of the register or the

memory & M the Borrow flag are

subtracted from the contents of the

accumulator and the result is placed in the

accumulator.

Example − SBB K

SUI

8-bit data

Subtract the

immediate from the

accumulator

The 8-bit data is subtracted from the

contents of the accumulator & the result

is stored in the accumulator.

Example − SUI 55K

XCHG

None

Exchange H and L

with D and E

The contents of register H are exchanged

with the contents of register D, and the

contents of register L are exchanged

with the contents of register E.

Example − XCHG

R

INR
M

Increment the

register or the

memory by 1

The contents of the designated register or

the memory are incremented by 1 and their

result is stored at the same place.

Example − INR K

INX R

Increment register

pair by 1

The contents of the designated register pair

are incremented by 1 and their result is

stored at the same place.

Example − INX K

R
DCR

M

Decrement the

register or the

memory by 1

The contents of the designated register or

memory are decremented by 1 and their

result is stored at the same place.

Example − DCR K

DCX R

Decrement the

register pair by 1

The contents of the designated register pair

are decremented by 1 and their result is

stored at the same place.

Example − DCX K

DAA

None

Decimal adjust

accumulator

The contents of the accumulator are

changed from a binary value to two 4-bit

BCD digits.

If the value of the low-order 4-bits in the

accumulator is greater than 9 or if AC flag

is set, the instruction adds 6 to the low-

order four bits.

If the value of the high-order 4-bits in the

accumulator is greater than 9 or if the

Carry flag is set, the instruction adds 6 to

the high-order four bits.

Example − DAA

Data transfer Instruction:

Opcode Operand Meaning Explanation

MOV

Rd, Sc

M, Sc

Dt, M

Copy from the source

(Sc) to the

destination(Dt)

This instruction copies the contents of

the source register into the destination

register without any alteration.

Example − MOV K, L

MVI

Rd, data

M, data

Move immediate 8-

bit

The 8-bit data is stored in the

destination register or memory.

Example − MVI K, 55L

LDA

16-bit address

Load the accumulator

The contents of a memory location,

specified by a 16-bit address in the

operand, are copied to the

accumulator.

Example − LDA 2034K

LDAX

B/D Reg. pair

Load the accumulator

indirect

The contents of the designated

register pair point to a memory

location. This instruction copies the

contents of that memory location into

the accumulator.

Example − LDAX K

LXI

Reg. pair, 16-bit data

Load the register pair

immediate

The instruction loads 16-bit data in the

register pair designated in the register

or the memory.

Example − LXI K, 3225L

LHLD

16-bit address

Load H and L

registers direct

The instruction copies the contents of the

memory location pointed out by the

address into register L and copies the

contents of the next memory location

into register H.

Example − LHLD 3225K

STA

16-bit address

16-bit address

The contents of the accumulator are

copied into the memory location

specified by the operand.

This is a 3-byte instruction, the second

byte specifies the low-order address

and the third byte specifies the high-

order address.

 Example − STA 325K

STAX

16-bit address

Store the accumulator

indirect

The contents of the accumulator are

copied into the memory location

specified by the contents of the operand.

Example − STAX K

SHLD

16-bit address

Store H and L

registers direct

The contents of register L are stored in

the memory location specified by the

16- bit address in the operand and the

contents of H register are stored into the

next memory location by incrementing

the operand.

This is a 3-byte instruction, the second

byte specifies the low-order address

and the third byte specifies the high-

order address.

Example − SHLD 3225K

XCHG

None

Exchange H and L

with D and E

The contents of register H are exchanged

with the contents of register D, and the

contents of register L are exchanged

with the contents of register E.

Example − XCHG

SPHL

None

Copy H and L

registers to the stack

pointer

The instruction loads the contents of the

H and L registers into the stack pointer

register. The contents of the H register

provide the high-order address and the

contents of the L register provide the

low- order address.

Example − SPHL

XTHL

None

Exchange H and L

with top of stack

The contents of the L register are

exchanged with the stack location

pointed out by the contents of the stack

pointer register.

The contents of the H register are

exchanged with the next stack

location (SP+1).

 Example − XTHL

PUSH

Reg. pair

Push the register pair

onto the stack

The contents of the register pair

designated in the operand are copied

onto the stack in the following sequence.

The stack pointer register is decremented

and the contents of the high order

register (B, D, H, A) are copied into that

location.

The stack pointer register is decremented

again and the contents of the low-order

register (C, E, L, flags) are copied to

that location.

Example − PUSH K

POP

Reg. pair

Pop off stack to the

register pair

The contents of the memory location

pointed out by the stack pointer register

are copied to the low-order register (C,

E, L, status flags) of the operand.

The stack pointer is incremented by 1 and

the contents of that memory location are

copied to the high-order register (B, D,

H, A) of the operand.

The stack pointer register is

again incremented by 1.

Example − POPK

OUT

8-bit port address

Output the data from

the accumulator to a

port with 8bit address

The contents of the accumulator are

copied into the I/O port specified by

the operand.

Example − OUT K9L

IN

8-bit port address

Input data to

accumulator from a

port with 8-bit

address

The contents of the input port

designated in the operand are read and

loaded into the accumulator.

Example − IN5KL

4.9-Adressing mode of 8085 Microprocessor

✓ The process of specifying the data to be operated on by the instruction is called

addressing.

✓ The various formats for specifying operands are called addressing modes.

✓ The 8085 has thefollowing five types of addressing modes.

o Immediate addressing

o Memory direct addressing

o Register direct addressing

o Indirect addressing

o Implicit addressing

Immediate Addressing:

✓ . In this mode, the operand given in the instruction - a byte or word – transfers

to the destination register or memory location.

Ex: MVI A, 9AH

✓ The operand is a part of the instruction.

✓ The operand is stored in the register mentioned in the instruction.

Memory Direct Addressing:

✓ Memory direct addressing moves a byte or word between a memory location and

register.

✓ The memory location address is given in the instruction.

Ex: LDA 850FH

✓ This instruction is used to load the content of memory address 850FH in the

accumulator.

Register Direct Addressing:
✓ Register direct addressing transfer a copy of a byte or word from source register to

destination register.

Ex: MOV B, C

✓ It copies the content of register C to register B.

Indirect Addressing:

✓ Indirect addressing transfers a byte or word between a register and a memory location.

Ex: MOV A, M

✓ Here the data is in the memory location pointed to by the contents

of HL pair. The data ismoved to the accumulator.

Implicit Addressing:
✓ In this addressing mode the data itself specifies the data to be operated upon.

Ex: CMA

✓ The instruction complements the content of the accumulator.

✓ No specific data or operand is mentioned inthe instruction.

4.10-Fetch cycle, Machine cycle, Instruction cycle, T-State

Fetch cycle:

✓ The first byte of an instruction is its op-code.

✓ An instruction may be more than one byte long.

✓ The other bytes are data or operand address.

✓ The program counter (PC) keeps the memory address of the next instruction to be

executed.

✓ In the beginning of a fetch cycle the content of the program counter, which is the

address of the memory location where op-code is available, is sent to the memory.

✓ ·The memory places the op-code on the data bus so as to transfer it to the

microprocessor.

✓ The entire operation of fetching an op-code takes three clock cycles.

Machine Cycle:

✓ Machine cycle is defined as the time required for completing the operation of

accessing either memory or I/O device.

✓ In the 8085, the machine cycle may consist of three to six T states.

✓ The T-state is defined as one sub-division of the operation performed in one clock

period.

✓ ·In every machine cycle the first operation is op-code fetch and the remaining will be

read or write from memory or IO devices.

Instruction Cycle:

✓ ·An instruction is a command given to the microprocessor to perform a specific

operation on the given data.

✓ ·Sequence of instructions written for a processor to perform a particular task is called

a program.

✓ The microprocessor fetches one instruction from the memory at a time & executes it.

It executes all the instructions of the program one by one to produce the final result.

✓ In other words, an instruction cycle is defined as the time required completing the

execution of an instruction.

✓ An instruction cycle consists of a fetch cycle and an execute cycle.

✓ The time required to fetch an opcode (fetch cycle) is a fixed slot of time while the

time required to execute an instruction (execute cycle) is variable which depends on

the type of instruction to be executed.

Instruction cycle (IC) = Fetch cycle (FC) Execute cycle (EC)

T-state:

✓ One time period of frequency of microprocessor is called t-state.

✓ A t-state is measured from the falling edge of one clock pulse to the falling edge of

the next clock pulse.

✓ Fetch cycle takes four t-states and execution cycle takes three t-states

4.11-Timing Diagram for Opcode Fetch, Memory Read, Memory

Write, I/O read and I/O write.

Various operation of 8085 MP

To execute a program, 8085 performs various operations as:

• Opcode fetch

• Operand fetch

• Memory read/write

• I/O read/write

Opcode Fetch Machine Cycle:

✓ It is the first step in the execution of any instruction.

✓ The following points explain the various operations that take place and the signals

that are changed during the execution of opcode fetch machine cycle:

T1 clock cycle

✓ The content of PC is placed in the address bus; AD0 - AD7 lines contains lower

bit address and A8 – A15 contains higher bit address.

✓ IO/M signal is low indicating that a memory location is being accessed. S1 and

S0 also changed to the levels.

✓ ALE is high, indicates that multiplexed AD0 – AD7 act as lower order bus.

T2 clock cycle

✓ Multiplexed address bus is now change to Data bus.

✓ The RD signal is made low by the processor. This signal makes the memory device

load the data bus with the contents of the location addressed by the processor.

T3 clock cycle

✓ The opcode available on the data bus is read by the processor and moved to the

instruction register.

✓ The RD signal is deactivated by making it logic 1.

T4 clock cycle

✓ The processor decode the instruction in the instruction register and generate the

necessary control signals to execute the instruction.

✓ Based on the instruction further operations such as fetching, writing into memory etc

takes place.

Memory Read Machine cycle:

✓ The memory read cycle is executed by the processor to read a data byte from memory.

✓ The machine cycle isexactly same to opcode fetch except: a) It has three T-states b)

The S0 signal is set to 0.

✓ The timing diagramof this cycle is given in Fig.

Memory Write Machine cycle:

✓ The memory write cycle is executed by the processor to write a data byte in a memory

location.

✓ The processor takes three T-states and WR signal is made low.

✓ The timing diagram of this cycle is given in Fig

I/O Read Cycle:

✓ The I/O read cycle is executed by the processor to read a data byte from I/O port or

from peripheral, which is I/O mapped in the system.

✓ The 8-bit port address is placed both in the lower and higher order address bus.

✓ The processor takes three T-states to execute this machine cycle. The timing diagram

of this cycle is given in Fig.

I/O Write Cycle:

✓ The I/O write cycle is executed by the processor to write a data byte to I/O port or to a

peripheral, which is I/O mapped in the system.

✓ The processor takes three T-states to executethis machine cycle.

✓ The timing diagram of this cycle is given in Fig.

4.12-Timing Diagram for 8085 Instruction

Draw the timing diagram of the following code,

MVI B, 45

✓ Opcode: MVI

✓ Operand: B is the destination register and 45 is the source data which needs to be
transferred to the register.

✓ 45’ data will be stored in the B register.
✓ The opcode fetch will be same in all the instructions.

✓ Only the read instruction of the opcode needs to be added in the successive T states.

✓ For the opcode fetch the IO/M (low active) = 0, S1 = 1 and S0 = 1. Also, 4 T states

will be required to fetch the opcode from memory.

✓ For the opcode read the IO/M (low active) = 0, S1 = 1 and S0 = 0. Also, only 3 T

states will be required to read data from memory.

Draw the timing diagram of the given instruction in 8085,

MOV B, C

✓ In this instruction Only opcode fetching is required for this instruction and thus we
need 4 T states for the timing diagram.

✓ For the opcode fetch the IO/M (low active) = 0, S1 = 1 and S0 = 1.

In Opcode fetch (t1-t4 T states):

✓ 00 – lower bit of address where opcode is stored, i.e., 00

✓ 20 – higher bit of address where opcode is stored, i.e., 20.

✓ ALE – provides signal for multiplexed address and data bus. Only in t1 it used as

address bus to fetch lower bit of address otherwise it will be used as data bus.

✓ RD (low active) – signal is 1 in t1 & t4 as no data is read by microprocessor. Signal is

0 in t2 & t3 because here the data is read by microprocessor.

✓ WR (low active) – signal is 1 throughout, no data is written by microprocessor.

✓ IO/M (low active) – signal is 1 in throughout because the operation is performing on

memory.

✓ S0 and S1 – both are 1 in case of opcode fetching.

Draw the timing diagram of the given instruction in 8085,

INR M

✓ The instruction INR M is of 1 byte; therefore, the complete instruction will be stored

in a single memory address.

✓ The opcode fetch will be same as for other instructions in first 4 T states.

✓ Only the Memory read and Memory Write need to be added in the successive T

states.

In Opcode fetch (t1-t4 T states) –

✓ 00: lower bit of address where opcode is stored, i.e., 00

✓ 20: higher bit of address where opcode is stored, i.e., 20.

✓ ALE: provides signal for multiplexed address and data bus. Only in t1 it used as

address bus to fetch lower bit of address otherwise it will be used as data bus.

✓ RD (low active): signal is 1 in t1 & t4 as no data is read by microprocessor. Signal is

0 in t2 & t3 because here the data is read by microprocessor.

✓ WR (low active): Signal is 1 throughout, no data is written by microprocessor.

✓ IO/M (low active): Signal is 0 in throughout because the operation is performing on

memory.

✓ S0 and S1: both are 1 in case of opcode fetching.

In Memory read (t5-t7 T states) –

✓ 00: lower bit of address where opcode is stored, i.e, 00

✓ 50: higher bit of address where opcode is stored, i.e, 50.

✓ ALE: provides signal for multiplexed address and data bus. Only in t5 it used as

address bus to fetch lower bit of address otherwise it will be used as data bus.

✓ RD (low active): signal is 1 in t5, no data is read by microprocessor. Signal is 0 in t6

& t7, data is read by microprocessor.

✓ WR (low active): signal is 1 throughout, no data is written by microprocessor.

✓ IO/M (low active): signal is 0 in throughout; operation is performing on memory.

✓ S0 and S1 – S1=1 and S0=0 for Read operation.

In Memory write (t8-t10 T states) –

✓ 00: lower bit of address where opcode is stored, i.e, 00

✓ 50: higher bit of address where opcode is stored, i.e, 50.

✓ ALE: provides signal for multiplexed address and data bus. Only in t8 it used as

address bus to fetch lower bit of address otherwise it will be used as data bus.

✓ RD (low active): signal is 1 throughout, no data is read by microprocessor.

✓ WR (low active): signal is 1 in t8, no data is written by microprocessor. Signal is 0 in

t9 & t10, data is written by microprocessor.

✓ IO/M (low active): signal is 0 in throughout; operation is performing on memory.

✓ S0 and S1 – S1=0 and S0=1 for write operation.

4.13-Counter and Time Delay

Counter in 8085 MP:

✓ The function of the program counter is to point to the memory address from which the

next byte is to be fetched.

✓ When a byte (machine code) is being fetched, the program counter is incremented by

one to point to the next memory location.

✓ Stack Pointer: It is used as a memory pointer.

✓ The Program Counter (PC) is a register structure that contains the address pointer

value of the current instruction.

✓ Each cycle, the value at the pointer is read into the instruction decoder and the

program counter is updated to point to the next instruction.

Time Delay in 8085 MP:

✓ The delay will be used in different places to simulate clocks, or counters or some

other area.

✓ When the delay subroutine is executed, the microprocessor does not execute other

tasks.

✓ For the delay we are using the instruction execution times. executing some

instructions in a loop, the delay is generated.

4.14-Simple assembly language programming of 8085

Assembly language program:

Write 8085 Assembly language program to perform 8-bit addition without carry. The numbers

are stored at F100, and F101. Result will be stored at F102.

Input

Address Data

… …

F100 CE

F101 21

Program

Address HEX Codes Labels Mnemonics Comments

F000 21, 01, F1 LXI H,F100H Point to get the numbers

F003 7E MOV A,M Load first number to A

F004 23 INX H Point to next operand

F005 86 ADD M Add M with A

F006 23 INX H Point to next location

F007 77 MOV M,A Store result

Address HEX Codes Labels Mnemonics Comments

F008 76 HLT Terminate the program

Output

 Address Data

… …

F102 EF

Write 8085 Assembly language program to subtract two 8-bit numbers and store the result

at locations 8050H and 8051H.

Input

first input

Address Data

.

.

.

.

.

.

8000 78

8001 5D

.

.

.

.

.

.

second input

Address Data

.

.

.

.

.

.

8000 23

Address Data

8001 CF

Program

Address HEX

Codes

Labels Mnemonics Comments

F000 0E,00 MVIC,00H Clear C register

F002 21,00, 80 LXIH,8000H Load initial address to get operand

F005 7E MOVA, M Load Acc with the memory element

F006 23 INX H Point to next location

F007 46 MOVB, M Load B with the second operand

F008 90 SUB B Subtract B from A

F009 D2,0D, F0 JNC STORE When CY = 0, go to STORE

F00C 0C INR C Increase C by 1

F00D 21,50, 80 STORE LXIH,8050H Load the destination address

F010 77 MOVM, A Store the result

F011 23 INX H Point to next location

F012 71 MOVM, C Store the borrow

F013 76 HLT Terminate the program

Output

first output

Address Data

. .

. .

. .

8050 1B

8051 00

. .

. .

. .

second output

Address Data

. .

. .

. .

8050 54

8051 01

Write 8085 Assembly language program to multiply two 8-bit numbers stored in

memory location and store the 16-bit results into the memory.

Input

Address Data

. .

. .

. .

Address Data

8000 DC

8001 AC

Program

 Address HEX Codes Labels Mnemonics Comments

F000 21, 00, 80 LXI H,8000H Load first operand address

F003 46 MOV B, M Store first operand to B

F004 23 INX H Increase HL pair

F005 AF XRA A Clear accumulator

F006 4F MOV C, A Store 00H at register C

F007 86 LOOP ADD M Add memory element with Acc

F008 D2, 0C, F0 JNC SKIP When Carry flag is 0, skip next task

F00B 0C INR C Increase C when carry is 1

F00C 05 SKIP DCR B Decrease B register

F00D C2, 07, F0 JNZ LOOP Jump to loop when Z flag is not 1

F010 21, 50, 80 LXI H,8050H Load Destination address

F013 71 MOV M, C Store C register content into memory

F014 23 INX H Increase HL Pair

F015 77 MOV M, A Store Acc content to memory

Address HEX Codes Labels Mnemonics Comments

 F016 76 HLT Terminate the program

Output

Address

Data

 .

.

.

 .

.

.

 8050 93

 8051 D0

Short Question and Answer:

1- Define Microprocessor and Microcomputer.

Ans- Microcomputer:

✓ Microcomputer is an Electronics Device

✓ A computer system generally consists of the following units

1-Input device

2-Output device

3-CPU

4-Memory Unit

Microprocessor:

✓ Microprocessor is one of the most important components of Digital computer.

✓ It acts as a brain of the computer.

✓ Microprocessor is the electronic device and it is situated in the CPU.

✓ Using this processor, we execute the program.so it is called programable integrated

circuit.

2- Difference between Microprocessor and Microcomputer

1- Microprocessor is one component of amicrocomputer.

2- Microprocessor is a programmable integrated circuit

which has its own decision making capability.

Example-8085, INTEL8086,8088,8008,8080 etc.

1-A digital computer in which one

microprocessor is used as a CPU known as

microcomputer.

2-Microcomputer uses a microprocessor

for its processing operation .

Example-Desktop, Laptop, Note Book etc.

3- Define Program counter.

✓ This 16-bit register deals with sequencing the execution of instructions.

✓ This register is a memory pointer.

✓ The microprocessor uses this register to sequence the execution of the instructions

✓ When a byte is being fetched, the program counter is automatically incremented by

one to point to the next memory location.

4- Define ALU in microprocessor.

✓ The ALU performs the actual numerical and logical operations such as Addition

(ADD), Subtraction (SUB), AND, OR etc.

✓ It uses data from memory and from Accumulator to perform operations.

✓ The results of the arithmetic and logical operations are stored in the accumulator.

5- Define Flag register in 8085 Microprocessor.

✓ The ALU includes five flip-flops, which are set or reset after an operation according

to data condition of the result in the accumulator and other registers.

✓ The five-status flag of INTEL 8085 MP are—

✓ Zero (Z), Carry (CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags.

✓ Their bit positions in the flag register are shown in Fig.

✓ The microprocessor uses these flags to test data conditions.

6- Define Sack Pointer.

✓ The stack pointer is also a 16-bit register, used as a memory pointer.

✓ It points to a memory location in R/W memory, called stack.

✓ The beginning of the stack is defined by loading 16- bit address in the stack pointer.

✓ Stack-The Stack is a sequence of memory location set by a programmer to store

different element. So, it is known as Storage device.

✓ Stack works by LIFO (Last in First out) Operation.

7- How many interrupt signal are present in 8085 Microprocessor.

✓ There are 5 Interrupt signal i.e TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR.

8- How many Instructions set are present in 8085 Microprocessor.

✓ Instruction sets are instruction codes to perform some task. It is classified into five

categories.

1-Control Instruction

2-Logical Instruction

3-Branching Instruction

4-Arithmatic Instruction

5- Data transfer Instruction

9- Define Addressing mode. How many Addressing mode are present in 8085.

✓ The process of specifying the data to be operated on by the instruction is called

addressing.

✓ The various formats for specifying operands are called addressing modes.

✓ The 8085 has thefollowing five types of addressing modes.

o Immediate addressing

o Memory direct addressing

o Register direct addressing

o Indirect addressing

o Implicit addressing

10- Define T-state.

✓ One time period of frequency of microprocessor is called t-state.

✓ A t-state is measured from the falling edge of one clock pulse to the falling edge of

the next clock pulse.

✓ Fetch cycle takes four t-states and execution cycle takes three t-states

Long Question:

1- Explain the Architecture of 8085 Microprocessor.

2- Draw the pin Diagram of 8085 and explain each pin,

3- Differenciate between one byte, two-byte, three-byte instruction with Example.

5-Draw the Timing diagram of MVI instruction.

6-Write the Assembly language program for Addition of two 8-bit number.

CHAPTER NUMBER -5

INTERFACING AND SUPPORT CHIPS

LEARING OBJECTIVES:

5.1. Basic interfacing concepts, memory mapping and I/O mapping.

5.2. Functional Block Diagram and description of each block of programmable peripheral

interface intel 8255.

5.3. Application using 8255 :Seven Segment LED Display, Square Wave Generator, Traffic

Light Control.

5.1-Basic interfacing concepts, memory mapping and I/O mapping

✓ The programs and data that are executed by the microprocessor have to be stored inROM/EPROM and

RAM, which are basically semiconductor memory chips.

✓ The programs and data that are stored in ROM/EPROM are not erased even when power supply to the

chip is removed. Hence, they are called non-volatile memory.

✓ They can be used to store permanent programs. In a RAM, stored programs and data are erased when the

power supply to the chip is removed.

✓ Hence, RAM is called volatile memory. RAM can be used to store programs and data that include,

programs written during software development for a microprocessor based system, program written when

one is learning assembly language programming and data enter while testing these programs. Input and

output devices, which are interfaced with 8085, are essential in any microprocessor based system.

✓ They can be interfaced using two schemes: I/O mapped I/O and memory-mapped I/O. In the I/O mapped

I/O scheme, the I/O devices are treated differently from memory. In the memory-mapped I/O scheme,

each I/O device is assumed to be a memory location.

Memory mapping and I/O mapping

✓ Like the memory locations 8085 microprocessor gets addressed by the processor which are called

memory-mapped Input Output ports. There is a set of instructions for this memory-mapped I/O

operations.

✓ Register A is an 8-bit register used in 8085 to perform arithmetic, logical, I/O & LOAD/STORE

Operations Memory-mapped I/O uses the same address space to address both memory and I/O devices.

✓ The memory and registers of the I/O devices are mapped to (associated with) address values. So when an

address is accessed by the CPU, it may refer to a portion of physical RAM, or it can instead refer to

memory of the I/O device.

✓ Thus, the CPU instructions used to access the memory can also be used for accessing devices. Each I/O

device monitors the CPU's address bus and responds to any CPU access of an address assigned to that

device, connecting the data bus to the desired device's hardware register.

✓ To accommodate the I/O devices, areas of the addresses used by the CPU must be reserved for I/O and

must not be available for normal physical memory.

https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/I/O_device
https://en.wikipedia.org/wiki/I/O_device
https://en.wikipedia.org/wiki/Register_(computing)
https://en.wikipedia.org/wiki/Physical_memory
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Hardware_register

✓ The reservation may be permanent, or temporary (as achieved via bank switching).

✓ The 8085 initiates set of signals such as IO/M , RD’ and WR’ when it wants to read from and write into

memory. Similarly, each memory chip has signals such as CE or CS’ (chip enable or chip select), OE or

RD’ (output enable or read) and WE or WR (write enable or write) associated with it.

✓ When the 8085 wants to read from and write into memory, it activates IO/M , RD’ and WR’ signals as

shown in Table.

✓ Status of IO/M , RD’ and WR’ signals during memory read and write operations

IO/M RD’ WR’ Operation

0 0 1 8085 reads data from memory

0 1 0 8085 writes data into memory

✓ Using IO/M , RD’ and WR’ signals, two control signals MEMR (memory read) and MEMW (memory

write) are generated.

5.2- Functional Block Diagram and description of each block of

programmable peripheral interface intel 8255

✓ The 8255A is a general purpose programmable I/O device designed for use with Intel microprocessors. It

consists of three 8-bit bidirectional I/O ports (24I/O lines) that can be configured tomeet different system

I/O needs. The three ports are PORT A, PORT B & PORT C.

✓ Port A contains one 8-bit output latch/buffer and one 8-bit input buffer. Port B is same as PORT A or

PORT B. However, PORT C can be split into two parts PORT C lower (PC0-PC3) and PORT C upper

(PC7-PC4) by the control word.

✓ The three ports are divided in two groups Group A (PORT A and upper PORT C) Group B (PORT B and

lower PORT C). The two groups can be programmed in three different modes.

✓ In the first mode (mode 0), each group may be programmed in either input mode or output mode (PORT

A, PORT B, PORT C lower, PORT C upper). I

✓ n mode 1, the second’s mode, each group may be programmed to have 8-lines of input or output

(PORTA or PORT B) of the remaining 4-lines (PORT C lower or PORT C upper) 3-lines are used for

hand shaking and interrupt control signals.

✓ The third mode of operation (mode 2) is a bidirectional bus mode which uses 8-line (PORT A only for a

bidirectional bus and five lines (PORT C upper 4 lines and borrowing one from other group) for

handshaking.

✓ The 8255 is contained in a 40-pin package, whose pin out is shown below:

https://en.wikipedia.org/wiki/Bank_switching

Functional Block Diagram :

Data Bus Buffer:

It is a tri-state 8-bit buffer used to interface the chip to the system data bus. Data is transmitted or received by

the buffer upon execution of input or output instructions by the CPU. Control words and status information

are also transferred through the data bus buffer. The data lines are connected to B D B of p.

Read/Write and logic control:

The function of this block is to control the internal operation of the device and to control the transfer of data

and control or status words. It accepts inputs from the CPU address and control buses a nd in turn issues

command to both the control groups.

 Chip Select:

A low on this input selects the chip and enables the communication between the 8255 A & the CPU. It is

connected to the output of address decode circuitry to select the device when it RD ’ = (Read). A low on this

input enables the 8255 to send the data or status information to the CPU on the data bus.

WR’ (Write):

A low on this input pin enables the CPU to write data or control words into the 8255 A.

A1, A0 port select:

These input signals, in conjunction with the RD’ and WR’ inputs, control the selection of one of the

three ports or the control word registers. They are normally connected to the least significant bits of the

address bus (A0 and A1).

✓ Following Truth Table Shows the Port Selection

A1 A0

 WR’ CS’ Input operation

0 0 0 1 0 PORT A Data bus

0 1 0 1 0 PORT B Data bus

1 0 0 1 0 PORT C Data bus

0

 0

1

0

0

Output operation
Data bus PORT A

0 1 1 0 0 Data bus PORT B

1 0 1 0 0 Data bus PORT C

1 1 1 0 0 Data bus control

PORTs A, B and C:

The 8255A contains three 8-bit ports (A, B and C). All can be configured in a variety of

Functional c haracteristics by the system software.

PORTA: One 8-bit data output latch/buffer and one 8-bit data input latch.

PORT B: One 8-bit data output latch/buffer and one 8-bit data input buffer.

PORT C: One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input).

✓ These ports can be divided into two 4-bit ports under the mode control.

✓ Each 4-bit port contains a 4-bit latch and it can be used for the control signal outputs and status signals

inputs in conjunction with ports A and B.

Group A & Group B control:

✓ The functional configuration of each port is programmed by the system software.

✓ The control words outputted by the CPU configure the associated ports of the each of the two groups.

Each control block a ccepts command from Read/Write content logic receives control words from the

internal data bus and issues proper commands to its associated ports.

✓ Control Group A – Port A & Port C upper.

✓ Control Group B – Port B & Port C lower.

✓ The control word register can only be written into No read operation if the control word register is

allowed.

Operational Description:

Mode selection:

There are three basic modes of operation that can be selected by the system software.

✓ Mode 0: Basic Input/output

✓ Mode 1: Strobes Input/output

✓ Mode 2: Bi-direction bus.

When the reset input goes HIGH all poets are set to mode’0’ as input which means all 24 lines are in high

impedance state and can be used as normal input.

✓ After the reset is removed the 8255A remains in the input mode with no additional initialization.

✓ During the execution of the program any of the other modes may be selected using a single output

instruction.

✓ The modes for PORT A & PORT B can be separately defined, while PORT C is divided into two

portions as required by the PORT A and PORT B definitions.

✓ The ports are thus divided into two groups Group A & Group B.

✓ All the output register, including the status flip-flop will be reset whenever the mode is changed.

✓ Modes of the two group may be combined for any desired I/O o peration, e.g. Group A in mode ‘1’ and

group B in mode ‘0’.

5.3-Application using 8255-7-segment LED display, square wave generator, traffic

light controller

Interfacing 7-segment display

✓ A seven segment display module is an electronic device used to display digital numbers and it is made up of

seven LED segments.

✓ Because of the small size of the LEDs, it is really easy for a number of them to be connected together to

make a unit like seven segment display.

✓ In the seven segment display module, seven LED s are arranged in a rectangle.

✓ Sometimes, an additional LED is seen in a seven segment. display unit which is meant for displaying a

decimal point.

✓ Each LED segment has one of its pins brought out of the rectangular package.

✓ Other pins are connected together to a common terminal. Seven segment displays can only display 0 to 9

numbers.

✓ These seven LEDs indicate seven segments of the numbers and a dot point.

✓ Seven segment displays are seen associated with a great number of devices such as clocks,digital home

appliances, signal boards on roads etc.

Types of Seven segment displays

✓ Seven segment displays come up with two different configurations. They are the common anode and a

common cathode. One pin each from each segment is connected to a common terminal.

✓ According to the pins which are connected to the common terminal, the seven segment display is

categorized as a common anode and common cathode.

Common Cathode 7-segment display

✓ As the name indicates, its cathode is connected to a common terminal. Below is the schematic diagram to

indicate its common cathode structure.

✓ It should be connected to the ground while operating the display. If ahigh voltage is given to the anode,

then it will turn on the corresponding segment.

Common Anode 7-segment display

✓ In this type, the anode is common.

✓ It should be connected to a high voltage (to the supply through a resistor to limit current).

✓ In order to turn on a particular segment, a ground level voltage is given to the corresponding pin.

✓ Since logic circuits can sink more current than they can source, common anode connection is used most widely.

Generate square wave on all lines of 8255

Program to interface DAC using 8255 and generate square waveform

✓ The following is the assembly language using DAC to interface with 8255 and generate a square wave

on CRO.

✓ Here in the code, we use two delay elements one for the rising part of the wave and the other delay

element to reach zero i.e decrement.

✓ Certain value chosen is delayed or sustained for a time period to form the square wave.

✓ The two loops used in the program are iterated to repeat cycles of a square wave.

Code:

MOV DX,8807 : DX is loaded with control word register address of 8255

MOV AL,80 : Move 80 to Accumulator.

OUT DX,AL : Contents of AL are transferred to port A of 8255.

MOV DX,8801 : DX is loaded with Port A.

Address of 8255 Begin MOV AL,00.

OUT DX,AL ; Contents of AL are transferred to port A of 8255.

MOV CX,00FF: Delay1 Loop Delay1

MOV AL,FF OUT DX,AL : Contents of AL are transferred to port A of 8255

MOV CX,00FF : CX is loaded with 00FFH

Delay 2 Loop Delay2 : Repeat until CX=0JMP Begin ; Repeat the same

Design interface a Traffic light control system using 8255

DESCRIPTION

✓ Combination of Red, Amber and Green LEDs are provided to indicate Halt, Wait and Go states for

vehicles.

✓ Combination of Red and Green LEDs are provided for pedestrian crossing. 36 LEDs are arranged in

the form of an intersection.

✓ At the left corner of each road, a group of 5 LEDs (Red, Amber and Green) are arranged in the form of

a T section to control the traffic of that road.

✓ Each road is named as North N, South S, East E and West W. L1, L10, L19 and L28 (Red) are for stop

signal for the vehicles on the road N, S, W and E respectively. L2, L11, L20 and L29 (Amber) indicate

wait state for the vehicles on the road N, S, E and W respectively.

✓ L3,L4 and L5 (Green) are for left, straight and right turn for the vehicles on the road S. Similarly L12

- L13 - L14 , L23 - L22 - L21 and L32 - L31 - L30 simulates same function for the roads E, N & W

respectively.

✓ A total of 16 LEDs (2 Red & 2 Green at each road) are provided for pedestrian crossing. L7 - L9, L16

- L18, L25 - L27 & L34 - L36 (Green) when on allows pedestrians to cross and L6 - L8, L15 - L17,

L24 - L26 & L33 - L35 (Red) when on alarms the pedestrians to wait.

✓ To minimize the hardware pedestrians indicator LEDs (both Green and Red) are connected to some

port lines (PC4 to PC7) with Red inverted.

✓ Red LED’s L10 and L28are connected to port lines PC2 to PC3 while L1 and L19 are connected to

lines PC0 and PC1 after inversion. All other LEDs (Amber and Green) are connected to Port A and

port B.

INSTALLATION PROCEDURE

SDA_85M to NIFC_11 interface connection details:

✓ Connect p3 on 85M to the connector C1 on the interface using a 26 core FRC.

✓ Care should be taken such that, pin1 of P3 on the kit coincides with pin1 of cable [Observe the notch

on the cable connector]

✓ Power connection: Connect +5v, GND to the interface.

✓ Color codes of power connection on the interface +5v - Orange, Blue, White GND – Black .

✓ Enter the Program.

Possible Short Type Questions with Answers
1. Define interfacing .

Ans- In computing, an interface is a shared boundary across which two or more separate

components of a computer system exchange information. The exchange can be between

software, computer hardware, peripheral devices, humans, and combinations of these.

2. Define memory mapping and I/O mapping.

Ans- Memory-mapped I/O (MMIO) and I/O mapped I/O (PMIO) are two complementary

methods of performing input/output (I/O) between the central processing unit (CPU) and

peripheral devices in a computer. An alternative approach is using dedicated I/O processors,

commonly known as channels on mainframe computers, which execute their own instructions.

3. Define EPROM.

Ans- EPROM, in full erasable programmable read-only memory, Form of computer memory

that does not lose its content when the power supply is cut off and that can be erased and

reused.

4. State different modes of 8255. (w-20)

Ans- There are 2 modes in 8255 microprocessor :

a) Bit set reset (BSR) mode – This mode is used to set or reset the bits of port C only, and

selectedwhen the most significant bit (D7) in the control register is 0.

b) Input/output mode (I/O) – This mode is selected when the most significant bit (D7) in the

control register is 1.

Mode 0 – Simple or basic I/O mode:

Port A, B and C can work either as input function or as output function. The outputs are

latched but the inputs are not latched. It has interrupt handling capability.

Mode 1 – Handshake or strobbed I/O:

In this either port A or B can work and port C bits are used to provide handshaking. The

outputs as well as inputs are latched. It has interrupt handling capability. Before actual data

transfer there is transmission of signal to match speed of CPU and printer.

https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Peripheral_device
https://en.wikipedia.org/wiki/Peripheral_device
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Channel_I/O
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Instruction_(computer_science)

Q 5- Define ADC.

Ans- In electronics, an analog-to-digital converter (ADC, A/D, or A-to-D) is a system that

converts an analog signal, such as a sound picked up by a microphone or light entering a digital

camera, into a digital signal. An ADC may also provide an isolated measurement such as an

electronic device that converts an input analog voltage or current to a digital number

representing the magnitude of the voltage or current. Typically the digital output is a two's

complement binary number that is proportional to the input, but there are other possibilities.

Possible Long Type Questions

1. Draw the block diagram of 8255 . Explain the pin description of 8255.

2. Generate square wave using 8255.

3. Design and interface traffic light control using 8255.(w-20)

4. Design stepper motor using 8255.

REFERENCE :

Table:

SL. NO. NAME OF BOOK/SOURCE NAME OF THE

AUTHOR

NAME OF THE

PUBLICATION
1 Fundamentals of Digital

Electronics

Ananda Kumar PHI

2 Digital Electronics-Principal &

Application

S.K. Mondal TMH

3 Digital Electronics B.R.Gupta & V.Singhal S.K.Kateria

4 Digital Electronics P.Raja SciTech

5 Microprocessor Architecture

Programming And Application

with 8085

R.S.Goankar Peneram

6 Fundamentals of

Microprocessor And

Microcomputers

B.Ram Dhanpat Rai

7 Microprocessor And

Interfacing

Sunetra Choudhury &

S.P.Chowdhury

SciTech

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Microphone
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Digital_signal_(signal_processing)
https://en.wikipedia.org/wiki/Electronic_device
https://en.wikipedia.org/wiki/Electronic_device
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement

	da9305bd560fffac768c9a6f4792c629a0b5b16f619d645df9a06c47e9ec530a.pdf
	DIGITAL ELECTRONICS
	MICROPROCESSOR (TH-3)

	05c5861a9c54484c5291c7a6c57c03807f14169055c34db21fc69cc12d14c988.pdf

